> Linear Algebra
> [KOMS120301]-2023/2024

14.1 - Intuition behind eigenvectors

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 14 (December 2023)

Learning objectives

- Recap what we learned in the previous weeks;
- Get an intuitive understanding of the concept;
- Relate it to the concept of linear transformation.

What we have learned

Linear transformations

Linear systems

Determinants

> The "determinant" of a transformation

Change of basis

Figure: Prerequisites (source: Youtube of 3Blue1Brown)

Geometric interpretation of determinant (from Week 5)

Matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ can be viewed as an
"arrangement" of:

- row vectors:

$$
\left[\begin{array}{ll}
a & b
\end{array}\right] \text { and }\left[\begin{array}{ll}
c & d
\end{array}\right]
$$

- or, column vectors:

$$
\left[\begin{array}{l}
a \\
c
\end{array}\right] \text { and }\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

The matrix defines the so-called linear transformation of the unit square (in green) formed by the basis vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, with respect to:

- the row vectors, shown by the red parallelogram; or
- the column vectors, shown by the blue parallelogram

Both parallelograms have the same area. Prove it!

Vectors that "stay in their position" after transformation

Transformation of basis vectors (1)

Figure: Two basis vectors in standard system (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (2)

Figure: Result of transformation of the basis vectors remain in its "position" (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (3)

Figure: A (yellow) vector and its span (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (4)

Figure: The yellow vector does not stay in its position (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (5)

Figure: Another yellow vector (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (6)

Figure: The vector remains in its position after transformation (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (7)

Figure: What happens to the green basis vector and its span? (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (8)

Figure: The green vector remains in its position, and multiplies by 3 (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (9)

Figure: This happens to all vectors with the same (reverse) direction as the green vector (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (10)

Figure: They are all stretched to 3 times the original vector (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (11)

Figure: Another vector with similar property (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (12)

Figure: This vector remains in its position after transformation (source: Youtube of 3Blue1Brown)

Transformation of basis vectors (13)

Figure: The property holds for all vectors in the span of its vector (source: Youtube of 3Blue1Brown)

Eigenvectors (1)

Figure: The yellow vector is stretched by 2 (source: Youtube of 3Blue1Brown)

Eigenvectors (2)

Figure: The green vector is stretched by 3 (source: Youtube of 3Blue1Brown)

Eigenvectors (3)

Figure: Source: Youtube of 3Blue1Brown

Eigenvectors (4)

Figure: Other vectors do not stay in their span Source: Youtube of 3Blue1Brown

Eigenvectors (5)

Figure: The transformation keeps the two vectors (yellow and green) in their position (source: Youtube of 3Blue1Brown)

Eigenvectors (6)

Figure: The transformation keeps the two vectors in their position (source: Youtube of 3Blue1Brown)

Eigenvectors (7)

Figure: They are called eigenvectors (The transformation keeps the two vectors in their position source: Youtube of 3Blue1Brown)

Eigenvectors (8)

Figure: Prerequisites (source: Youtube of 3Blue1Brown)

Eigenvectors (9)

Figure: Prerequisites (source: Youtube of 3Blue1Brown)

