Linear Algebra [KOMS120301] - 2023/2024

14.1 - Intuition behind eigenvectors

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 14 (December 2023)

1/7 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Learning objectives

- Recap what we learned in the previous weeks;
- Get an intuitive understanding of the concept;
- Relate it to the concept of linear transformation.

2 / 7 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What we have learned

Figure: Prerequisites (source: Youtube of 3Blue1Brown)

3 / 7 © Dewi Sintiari/CS Undiksha

イロト イポト イヨト イヨト 三日

Geometric interpretation of determinant (from Week 5)

The matrix defines the so-called *linear transformation* of the unit square (in green) formed by the *basis vectors* $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, with respect to:

- the row vectors, shown by the red parallelogram; or
- the column vectors, shown by the blue parallelogram

Both parallelograms have the same area. Prove it is the same area of the same area.

4 / 7 © Dewi Sintiari/CS Undiksha

Vectors that "stay in their position" after transformation

5 / 7 © Dewi Sintiari/CS Undiksha

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨ

Transformation of basis vectors (1)

Figure: Two basis vectors in standard system (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (2)

Figure: Result of transformation of the basis vectors remain in its "position" (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Transformation of basis vectors (3)

Figure: A (yellow) vector and its span (source: Youtube of 3Blue1Brown)

6 / 7 © Dewi Sintiari/CS Undiksha

ヘロト ヘヨト ヘヨト ヘヨト

Transformation of basis vectors (4)

Figure: The yellow vector does not stay in its position (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (5)

Figure: Another yellow vector (source: Youtube of 3Blue1Brown)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (6)

Figure: The vector remains in its position after transformation (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

イロト イロト イヨト イヨト 三日

Transformation of basis vectors (7)

Figure: What happens to the green basis vector and its span? (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

ヘロト ヘロト ヘビト ヘビト

э

Transformation of basis vectors (8)

Figure: The green vector remains in its position, and multiplies by 3 (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (9)

Figure: This happens to all vectors with the same (reverse) direction as the green vector (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (10)

Figure: They are all stretched to 3 times the original vector (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (11)

Figure: Another vector with similar property (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (12)

Figure: This vector remains in its position after transformation (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

Transformation of basis vectors (13)

Figure: The property holds for all vectors in the span of its vector (*source: Youtube of 3Blue1Brown*)

6 / 7 © Dewi Sintiari/CS Undiksha

ヘロト ヘロト ヘビト ヘビト

Eigenvectors (1)

Figure: The yellow vector is stretched by 2 (*source: Youtube of 3Blue1Brown*)

7 / 7 © Dewi Sintiari/CS Undiksha

ヘロト ヘロト ヘビト ヘビト

э

Eigenvectors (2)

Figure: The green vector is stretched by 3 (*source: Youtube of 3Blue1Brown*)

7 / 7 © Dewi Sintiari/CS Undiksha

Eigenvectors (3)

Figure: Source: Youtube of 3Blue1Brown

7 / 7 © Dewi Sintiari/CS Undiksha

Eigenvectors (4)

Figure: Other vectors do not stay in their span *Source: Youtube of 3Blue1Brown*

7 / 7 © Dewi Sintiari/CS Undiksha

Eigenvectors (5)

Figure: The transformation keeps the two vectors (yellow and green) in their position (*source: Youtube of 3Blue1Brown*)

7 / 7 © Dewi Sintiari/CS Undiksha

Eigenvectors (6)

Figure: The transformation keeps the two vectors in their position (*source: Youtube of 3Blue1Brown*)

7 / 7 © Dewi Sintiari/CS Undiksha

(ロ) (部) (E) (E) (E)

Eigenvectors (7)

Figure: They are called eigenvectors (The transformation keeps the two vectors in their position *source: Youtube of 3Blue1Brown*)

7 / 7 © Dewi Sintiari/CS Undiksha

・ロト ・ 同ト ・ ヨト ・ ヨト

Eigenvectors (8)

Figure: Prerequisites (source: Youtube of 3Blue1Brown)

7 / 7 © Dewi Sintiari/CS Undiksha

Eigenvectors (9)

Figure: Prerequisites (source: Youtube of 3Blue1Brown)

7 / 7 © Dewi Sintiari/CS Undiksha

・ロト ・回 ト ・ ヨト ・ ヨト …