Linear Algebra
[KOMS119602] - 2022/2023

10 - Subspace

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 9 (November 2022)

Learning objectives

After this lecture, you should be able to:

1. explain the concept of subspace;
2. analyze if a given set of vectors in a vector space is a subspace of the vector space.

Subspace

Subspace

Let V be a vector space. A set $W \subseteq V$ is a subspace of V, if W is a vector space w.r.t. the addition and scalar multiplication operations defined on V.
Example: Let $V=\mathbb{R}^{3}$ and W is a plane that go through the point $(0,0,0)$.
Proof.
W should have a function: $a x+b y+c z=0$.

- Closure: Let $\mathbf{u}=\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathbf{v}=\left(x_{2}, y_{2}, z_{2}\right)$ be points in W, and $k \in \mathbb{R}$. Then:
- $\mathbf{u}+\mathbf{v}=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right) \in W$, because $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)+\left(z_{1}+z_{2}\right)=0$.
- $k \mathbf{u}=\left(k x_{1}, k y_{1}, k z_{1}\right) \in W$ because $k x_{1}+k x_{2}+k x_{3}=0$.
- Identity: The zero element is $\mathbf{0}=(0,0,0)$ and the one element is 1 . Clearly, $\mathbf{0}+\mathbf{u}=\mathbf{u}$ and $1 \mathbf{u}=\mathbf{u}$, for every $\mathbf{u} \in W$.
- The inverse of $\mathbf{u}=\left(x_{1}, y_{1}, z_{1}\right)$ is $-\mathbf{u}=\left(-x_{1},-y_{1},-z_{1}\right)$. Clearly, $\mathbf{u}=(-\mathbf{u})=\mathbf{0}$.
- Clearly, the commutative, associative, and distributive properties are satisfied.

Subspace theorem

Theorem

Let V be a vector space. If W is a set containing at least one vector of V, then W is a subspace of V iff the following conditions hold.

1. If $\mathbf{u}, \mathbf{v} \in W$, then $(\mathbf{u}+\mathbf{v}) \in W$.
2. If k is a scalar, and $\mathbf{u} \in W$, then $k \mathbf{u} \in W$.

By this theorem, then to check that W is a subspace of V, it is enough to check only Axiom 1 (closed under addition and closed under scalar multiplication properties).

5/11 © Dewi Sintiari/CS Undiksha

Subspace theorem (cont.)

Proof.
Since V is a vector space, then the axioms: commutativity, associativity, identity, inverse, and distributivity are satisfied.

Since the properties hold for every vector in V, then they hold for the subset W.

It is enough to check the closure property.

Example of subspace (1)

A line through the origin of \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}, with vector addition and scalar multiplication operations, is a subspace of \mathbb{R}^{3}.

Geometric proof

Let L be a line goes through the origin of \mathbb{R}^{3}. Given two vectors $\mathbf{u}, \mathbf{v} \in L$. Clearly, the vectors:

$$
(\mathbf{u}+\mathbf{v}) \text { and } k \mathbf{u}, k \in \mathbb{R}
$$

lie on the line (they are vectors with the same direction, but different magnitudes). So the closure property is satisfied.

Example of subspace (2) (cont.)

Exercise: Algebraic proof

Algebraically, prove that a line through the origin of \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}, with vector addition and scalar multiplication operations, is a subspace of \mathbb{R}^{3}.

Example of subspace (2)

The set of points on the plane that goes through the origin in \mathbb{R}^{3}, with vector addition and scalar multiplication operations, is a subspace of \mathbb{R}^{3}.

The set of points that go through the origin of \mathbb{R}^{3} has function:

$$
a x+b y+c z=0
$$

Check if the addition and scalar multiplication properties are satisfied.

1. Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ be vectors in \mathbb{R}^{3}. Then:

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)
$$

Clearly,

$$
\begin{aligned}
& a\left(u_{1}+v_{1}\right)+b\left(u_{2}+v_{2}\right)+c\left(u_{3}+v_{3}\right) \\
& \quad=\left(a u_{1}+b u_{2}+c u_{3}\right)+\left(a v_{1}+b v_{2}+c v_{3}\right)=0+0=0
\end{aligned}
$$

Example of non-subspace

The set W of all points (x, y) in \mathbb{R}^{2} s.t. $x \geq 0$ and $y \geq 0$, cannot be a subspace of \mathbb{R}^{3}.
W is not closed under scalar multiplication. For example:

$$
\mathbf{v}=(1,1) \in W \text { but }(-1) \mathbf{v}=-\mathbf{v}=(-1,-1) \notin W
$$

Please read the materials and do the relevant exercises in the Howard Anton's book

