Linear Algebra [KOMS119602] - 2022/2023

10 - Subspace

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 9 (November 2022)

1 / 11 © Dewi Sintiari/CS Undiksha

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of subspace;
- 2. analyze if a given set of vectors in a vector space is a subspace of the vector space.

2 / 11 © Dewi Sintiari/CS Undiksha

Subspace

3 / 11 © Dewi Sintiari/CS Undiksha

(日)

Subspace

Let V be a vector space. A set $W \subseteq V$ is a subspace of V, if W is a vector space w.r.t. the addition and scalar multiplication operations defined on V.

Example: Let $V = \mathbb{R}^3$ and W is a plane that go through the point (0, 0, 0). Proof.

W should have a function: ax + by + cz = 0.

• Closure: Let $\mathbf{u} = (x_1, y_1, z_1)$ and $\mathbf{v} = (x_2, y_2, z_2)$ be points in W, and $k \in \mathbb{R}$. Then:

- *Identity:* The zero element is $\mathbf{0} = (0, 0, 0)$ and the one element is 1. Clearly, $\mathbf{0} + \mathbf{u} = \mathbf{u}$ and $\mathbf{1u} = \mathbf{u}$, for every $\mathbf{u} \in W$.
- The *inverse* of $\mathbf{u} = (x_1, y_1, z_1)$ is $-\mathbf{u} = (-x_1, -y_1, -z_1)$. Clearly, $\mathbf{u} = (-\mathbf{u}) = \mathbf{0}$.
- Clearly, the commutative, associative, and distributive properties are satisfied.

4 / 11 © Dewi Sintiari/CS Undiksha

4 D > 4 A > 4 B > 4 B > 1 D 9 0 0

Subspace theorem

Theorem

Let V be a vector space. If W is a set containing at least one vector of V, then W is a subspace of V iff the following conditions hold.

- 1. If $\mathbf{u}, \mathbf{v} \in W$, then $(\mathbf{u} + \mathbf{v}) \in W$.
- 2. If k is a scalar, and $\mathbf{u} \in W$, then $k\mathbf{u} \in W$.

By this theorem, then to check that W is a subspace of V, it is enough to check only **Axiom 1** (closed under addition and closed under scalar multiplication properties).

Subspace theorem (cont.)

Proof.

Since V is a vector space, then the axioms: *commutativity*, *associativity*, *identity*, *inverse*, and *distributivity* are satisfied.

Since the properties hold for every vector in V, then they hold for the subset W.

It is enough to check the *closure* property.

6 / 11 © Dewi Sintiari/CS Undiksha

イロト 不得 トイヨト イヨト 二日

Example of subspace (1)

A line through the origin of \mathbb{R}^3 is a subspace of \mathbb{R}^3 , with vector addition and scalar multiplication operations, is a subspace of \mathbb{R}^3 .

Geometric proof

Let *L* be a line goes through the origin of \mathbb{R}^3 . Given two vectors $\mathbf{u}, \mathbf{v} \in L$. Clearly, the vectors:

 $(\mathbf{u} + \mathbf{v})$ and $k\mathbf{u}, \ k \in \mathbb{R}$

lie on the line (they are vectors with the same direction, but different magnitudes). So the closure property is satisfied.

7 / 11 © Dewi Sintiari/CS Undiksha

Example of subspace (2) (cont.)

Exercise: Algebraic proof

Algebraically, prove that a line through the origin of \mathbb{R}^3 is a subspace of \mathbb{R}^3 , with vector addition and scalar multiplication operations, is a subspace of \mathbb{R}^3 .

8 / 11 © Dewi Sintiari/CS Undiksha

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Example of subspace (2)

The set of points on the plane that goes through the origin in \mathbb{R}^3 , with vector addition and scalar multiplication operations, is a subspace of \mathbb{R}^3 .

The set of points that go through the origin of \mathbb{R}^3 has function:

$$ax + by + cz = 0$$

Check if the addition and scalar multiplication properties are satisfied.

1. Let
$$\mathbf{u} = (u_1, u_2, u_3)$$
 and $\mathbf{v} = (v_1, v_2, v_3)$ be vectors in \mathbb{R}^3 . Then:

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

Clearly,

$$egin{aligned} \mathsf{a}(u_1+v_1)+\mathsf{b}(u_2+v_2)+\mathsf{c}(u_3+v_3)\ &=(\mathsf{a} u_1+\mathsf{b} u_2+\mathsf{c} u_3)+(\mathsf{a} v_1+\mathsf{b} v_2+\mathsf{c} v_3)=0+0=0 \end{aligned}$$

9 / 11 © Dewi Sintiari/CS Undiksha

Example of non-subspace

The set W of all points (x, y) in \mathbb{R}^2 s.t. $x \ge 0$ and $y \ge 0$, cannot be a subspace of \mathbb{R}^3 .

W is not closed under scalar multiplication. For example:

$$\mathbf{v}=(1,1)\in W$$
 but $(-1)\mathbf{v}=-\mathbf{v}=(-1,-1)\notin W$

10 / 11 © Dewi Sintiari/CS Undiksha

Please read the materials and do the relevant exercises in the Howard Anton's book

11 / 11 © Dewi Sintiari/CS Undiksha