Width Parameters on Even-Hole-Free Graphs

Ni Luh Dewi Sintiari
PhD at LIP, ENS de Lyon (2018-2021)
Supervised by Nicolas Trotignon

24e Journées Graphes et Algorithmes
Paris, France
November 16, 2022

Сн 1:

Introduction

Even hole

Even-hole-free (EHF): the graph does not contain even hole, as an induced subgraph.

Induced subgraph, even-hole-free graphs

- H is an induced subgraph of G if H can be obtained from G by deleting vertices (denoted by $H \subseteq_{\text {ind }} G$)

Figure: $G, H \subseteq_{\text {ind }} G, H \not \mathbb{i n}_{\text {ind }} G$

- G is H-free if no induced subgraph of G is isomorphic to H
- When \mathcal{F} is a family of graphs, \mathcal{F}-free means H-free, $\forall H \in \mathcal{F}$

Tree-width

Tree-width $(t w(G)$: a parameter measuring how similar a graph from being a tree

$$
\operatorname{tw}(G)=\min _{H \text { chordalization of } G}\{\omega(H)-1\}
$$

The tree-width of a class of graphs \mathcal{C} is bounded if there is a constant k such that $\operatorname{tw}(G) \leq k, \forall G \in \mathcal{C}$.

Theorem (Courcelle (1990))

Every graph property definable in the monadic second-order logic of graphs* can be decided in linear time on graphs of bounded tree-width.

Note: There are several other width parameters, namely: rank-width, clique-width, path-width, and they are bounded one to each other.

[^0]
Motivation of studying even-hole-free graphs

Relation to perfect graphs

- G is perfect if $\forall H \subseteq_{\text {ind }} G, \chi(H)=\omega(H)^{\dagger}$
- Strong Perfect Graph Conjecture (by Berge, 1961; and proved by Chudnovsky, Robertson, Seymour, Thomas, 2002):
G is perfect if and only if G is (odd hole, odd antihole)-free

an antihole is the "complement" of a hole

Dichotomy between perfect graphs and EHF graphs

- Perfect graphs are (odd hole, odd antihole)-free
- EHF graphs are (even hole, even antihole length ≥ 6)-free

Comparison of the decomposition theorems

	EHF graphs \ddagger	Perfect graphs ${ }^{\S}$
Basic graphs	cliques, holes, long pyramids, nontrivial basic	bipartite, $\overline{\text { Lipartite }}$ (bipartite), doubled graphs
separatorartite		
	2-join,	2-join, $\overline{2-j o i n}$ homogeneous pair,
balanced skew partition		

Decomposition theorem: If G belongs to \mathcal{C} then G is either "basic" or G has some particular separator.

[^1]
Dichotomy between perfect graphs and EHF graphs

	EHF graphs	Perfect graphs
Structure	"simpler"	more complex
Maximum clique	poly-time	poly-time
Coloring	$?$	poly-time
Maximum independent set	$?$	poly-time

- Goal of study: to have better understanding of the structure of even-hole-free graphs

Part 2:
 Survey on tree-width of EHF GRAPHS

Survey on EHF graphs having bounded tree-width

Remark: in general, the tree-width of even-hole-free graphs is unbounded

- Planar EHF \rightarrow tw ≤ 49 [Silva, da Silva, Sales (2010)]
- K_{3}-free EHF $\rightarrow t w \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)]
- Pan-free EHF $\rightarrow t w \leq 1.5 \omega(G)-1$ [Cameron, Chaplick, Hoàng (2015)]
- Cap-free EHF $\rightarrow t w \leq 6 \omega(G)-1$ [Cameron, da Silva, Huang, Vušković (2018)]

Figure: Pan and cap

Problem statement

Problem (Cameron, Chaplick, Hoàng (2018))
Let G be even-hole-free, is $t w(G) \leq f(\omega(G))$?

- No, we prove that even-hole-free graphs with no K_{4} may have arbitrarily large tree-width

Part 3:
Results

Truemper configurations

theta

prism

pyramid

wheel

Figure: Truemper configurations; dashed lines represent paths of length at least 1

Truemper configurations

theta

prism

pyramid

wheel

Figure: Truemper configurations; dashed lines represent paths of length at least 1

- They appear in the decomposition theorems of graphs in the classes

	EHF graphs	Perfect graphs
Theta	\times	\checkmark
Prism	\times	\checkmark
Pyramid	\checkmark	\times
Wheel	(no even wheel)	(no wheel of some kind)

Theta-free graphs (TTF) \& even-hole-free graphs (EHF)

	(Even hole, K_{4})-free graphs	(Theta, triangle)-free graphs
Theta	\times	\times
Prism	\times	\times
Pyramid	\times	\checkmark
Wheel	\checkmark	\checkmark

3.1. LAYERED WheEL

Summary of results

Layered wheels: family of graphs in the classes with high tree-width
Layered wheel G_{ℓ}

- $\ell \geq 1$ is the number of "layers"

Theorem (S., Trotignon (2019))
$\forall \ell \geq 1$ integers, \exists a theta-free graph G_{ℓ} s.t.

$$
\ell \leq t w\left(G_{\ell}\right) \leq c \cdot \log \left(\left|V\left(G_{\ell}\right)\right|\right), \text { for some constant } c
$$

$\forall \ell \geq 1$ integers, \exists an (even hole, K_{4}, pyramid)-free graph G_{ℓ} s.t.

$$
\ell \leq t w\left(G_{\ell}\right) \leq c \cdot \log \left(\left|V\left(G_{\ell}\right)\right|\right), \text { for some constant } c
$$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Sketch of proof

- $G_{\ell, k}$ is full of subdivision of claws, but it is theta-free

theta
- tw $\left(G_{\ell, k}\right) \geq \ell$, because $G_{\ell, k}$ contains big clique minor

Logarithmic bound on the tree-width of layered wheels

Theorem (S., Trotignon (2019))
$t w\left(G_{\ell, k}\right)=O\left(\log \left(\left|V\left(G_{\ell, k}\right)\right|\right)\right)$
Key of proof:

1. To reach $\operatorname{tw}\left(G_{\ell, k}\right) \geq \ell$, it must be $\left|V\left(G_{\ell, k}\right)\right| \geq 3^{\ell}$ vertices.
2. Upper bound: $t w\left(G_{\ell, k}\right) \leq 2 \ell$.

Construction: (even hole, K_{4})-free layered wheel

- The first two layers are similar to TTF-layered-wheel

3.2: Bounds On TREE-WIDTH

Motivation: the logarithmic conjecture (now proved)

Conjecture (Logarithmic tree-width; S., Trotignon (2019))
$\exists c$ constant s.t. \forall (even hole, K_{4})-free graph G, $t w(G) \leq c \log |V(G)|$.

Theorem (Bodlaender (1988))
$\forall G$, given a tree decomposition of width w, the Weighted Maximum Independent Set can be solved in time $\mathcal{O}\left(2^{w} \cdot n\right)$.

Excluding $S_{i, j, k} \&$ implication on tree-width

$\forall i, j, k, t \in \mathbb{Z}^{T}$, the following classes have bounded tree-width:

- (theta, triangle, $S_{i, j, k}$)-free graphs
- (even hole, pyramid, $K_{t}, S_{i, j, k}$)-free graphs

$$
S_{i, j, k}
$$

Why excluding $S_{i, j, k}$?

- Graphs with no subdivision of claw have been widely studied.

The logarithmic conjectures are proved for (theta, triangle)-free graphs

Induced subgraphs and tree decompositions III.
Three-path-configurations and logarithmic treewidth, (T.
Abrishami, M. Chudnovsky, S. Hajebi, S. Spirkl, 2021)

3.3. EHF Graphs of Bounded Maximum DEGREE

Motivation

Layered wheels contain

- large clique minor
- vertices with high degree

Are the two conditions necessary?

What is the tree-width of even-hole-free graphs, that:

1. have no big clique minor?
2. have bounded degree?

Even-hole-free graphs with maximum degree $\Delta \leq 3$

Theorem (Decomposition; Aboulker, Adler, Kim, S., Trotignon (2020))

Let G be a subcubic (theta, prism)-free graph. ${ }^{〔}$ Then one of the following holds:

- G is a basic graph;
- G has a clique separator of size at most 2;
- G has a proper separator.

Conversely, every graph in the class can be built from a basic graph, by a sequence of gluing along the separators

[^2]
Even-hole-free graphs with $\Delta \leq 3$

The basic graphs:

Proper separator:

Tree-width of subcubic EHF graphs

Theorem (Tree-width; Aboulker, Adler, Kim, S., Trotignon (2020))

Every subcubic (theta, prism)-free graph (and therefore every even-hole-free subcubic graph) has tree-width at most 3.

Figure: Chordal graphs containing the basic graphs

Tree-width of subcubic EHF graphs

- Gluing along a clique and proper gluing preserve the tree-width

Figure: Gluing along a clique separator

Figure: Gluing along a proper separator

Structure Theorem of EHF pyramid-free graphs $\Delta=4$

Theorem (Decomposition; S., Trotignon (2020))
Let G be an (even hole, pyramid)-free graph with $\Delta(G) \leq 4$.
Then one of the following holds:

- G is a basic graph;
- G has a clique separator of size at most 3;
- G has a proper separator for \mathcal{C}.

Figure: Basic graphs in the decomposition of the class

The tree-width of EHF pyramid-free graphs $\Delta=4$

Theorem (Tree-width; S., Trotignon (2020))
Every (even hole, pyramid)-free graph with $\Delta \leq 4$ has tree-width at most 4.

Figure: The basic graphs

- Gluing along a clique and proper gluing preserve the tree-width

Result on EHF graphs of bounded maximum degree

Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree (T. Abrishami, M Chudnovsky, K.

Vušković, 2020)

Part 4:
Closing

Publication

N. L. D. Sintiari and N. Trotignon.
(Theta, triangle)-free and (even hole, K_{4})-free graphs. Part 1 : Layered wheels
Published in Journal of Graph Theory (CoRR, abs/1906.10998), 2021.

M. Pilipczuk, S. Thomass, N. L. D. Sintiari, and N. Trotignon.
(Theta, triangle)-free and (even hole, K_{4})-free graphs. Part 2 : Bounds on treewidth.
Published in Journal of Graph Theory (CoRR, abs/2001.01607), 2021.
E. P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon.

On the tree-width of even-hole-free graphs.
Published in European Journal of Combinatorics (CoRR, abs/2008.05504), 2021.

Open problems

Conjecture (now proved)
$\exists f$ s.t. if $\mathrm{tw}(G)>f(k)$, then G contains (as induced subgraph):

- a subdivision of a $(k \times k)$-wall; or
- the line graph of a subdivision of a $(k \times k)$-wall; or
- a vertex of degree at least k.

Conjecture (Grid-minor-like theorem (stronger version))
$\exists f$ s.t. if $\mathrm{tw}(G)>f(k)$, then G contains (as induced subgraph):

- $K_{k}, K_{k, k}$; or
- a subdivision of a $(k \times k)$-wall; or
- the line graph of a subdivision of a $(k \times k)$-wall; or
- a wheel with at least k spokes.

Open problems

A paper towards the conjecture:
Induced subgraphs and tree decompositions II. Toward walls and their line graphs in graphs of bounded degree (T. Abrishami, M Chudnovsky, C. Dibek, S. Hajebi, P. Rzażewski, s. Spirkl, K. Vušković, 2021)

Grid Induced Minor Theorem for graphs of small degree (T. Korhonen, 2022)

Thank you for listening!

[^0]: *Example: coloring, maximum independent set, maximum clique

[^1]: ${ }^{\ddagger}$ Ref: Conforti, Cornuéjols, Kapoor, Vušković (2002)
 ${ }^{\S}$ Ref: Chudnovsky, Robertson, Seymour, Thomas (2002)

[^2]: ${ }^{\text {T }}$ The theorem is proved for (theta, prism)-free graphs, which form a superclass of EHF graphs

