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TD 12 – Refreshing

Exercice 1. Alice needs help!
Alice is writing her PhD thesis, using an unreliable old laptop. As she is afraid of losing work in case
the laptop crashes, she regularly saves her work on an external disk. Alice decided to save her work
on the external disk every three hours. Writing to external disk takes three minutes. During day 3,
Alice’s laptop crashed, she had to reboot, and lost 90 minutes of work. She thus decided to save to the
external disk every half an hour instead. But after three additional days of work without problems,
she realized that she did less work on days 4–6 than days 1–3 (despite the loss in the 3rd day).

1. Intuitively explain why she did more work on the first three days
Alice is puzzled now: what is the best frequency to save her work?
The technique of saving intermediate work is called checkpointing. Because Alice works for a constant
amount of time between two checkpoints, her technique is called periodic checkpointing.
Computing environments are prone to faults. We can use exponential distributions to to quantify the
rate or frequency at which these faults strike. The definition of Exp(λ), the Exponential distribution
law of parameter λ, goes as follows:

• The probability density function is f (t) = λe−λtdt for t ≥ 0;

• The cumulative distribution function is F(t) = 1− e−λt for t ≥ 0;

• The mean is µ = 1
λ .

Consider a process executing in a fault-prone environment. The time-steps at which fault strike are
non-deterministic, meaning that they vary from one execution to another.

2. Using exponential distributions, create a model for the faults.
Based on the above modelization, a fault will strike every µ seconds. This is why µ is called the MTBF
of the process, where MTBF stands for Mean Time Between Faults.

3. Show that the expected number of faults N f aults(T) that will strike during T seconds is such
that

lim
T→∞

E[N f aults(T)]
T

=
1
µ

(1)

Why are Exponential distribution laws so important? This is because of their memoryless property: if
X ∼ Exp(λ), then P[X ≥ t + s|X ≥ s] = P[X ≥ t] for all t, s ≥ 0. This means the delay until the next
fault does not depend upon the time that has elapsed since the last fault i.e. the fault rate is constant.
We can now state the problem formally. Let Timebase be the base time of the work that needs to be
done, w/out overheads (checkpoints or faults). Assume Alice’s laptop is subject to faults with a mean
time between faults (MTBF) equal to µ.
The time to checkpoint is C seconds (C = 180 here). The period is Time seconds; a checkpoint is
taken after Alice has completed Time − C seconds of work. When a fault occurs, all work after the
last checkpoint is lost. After the fault, there is a downtime of D seconds to account for the temporary
unavailability (for example Alice’s laptop is restarted). Finally, in order to be able to resume the work,
the content of the last checkpoint needs to be recovered which takes a time of R seconds. The sum of
the time lost after the fault, of the downtime and of the recovery time is denoted Tlost. Let Timefinal(T)
be the expectation of the total execution time of an application of size Timebase with a checkpointing
period of size T. The optimization problem is to find the period T minimizing Timefinal(T). However,
for the sake of convenience, we rather aim at minimizing

Waste(T) =
Timefinal(T)− Timebase

Timefinal(T)
.

This objective is called the waste as it corresponds to the fraction of the execution time that does not
contribute to the progress of the application (the time wasted).
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4. Show that minimizing waste Waste is equivalent to minimizing the total time Timefinal

5. Calculate TimeFF, Waste[FF], the execution time, and waste if Alice is lucky and no faults occur

Now let us consider the entire execution (with faults) of the application. Let Timefinal denote the ex-
pected execution time of the application in the presence of faults. This execution time can be divided
into two parts: (i) the execution of chunks of work of size T − C followed by their checkpoint; and (ii)
the time lost due to the faults.

6. Write a formula for Timefinal using the above

In average, during a time Timefinal, N f aults = Timefinal
µ faults happen. We need to estimate Tlost. A

natural estimation for the moment when the fault strikes in the period is T
2 . Intuitively, faults strike

anywhere in the period, hence in average they strike in the middle of the period. We conclude that
Tlost =

T
2 + D + R, because after each fault there is a downtime and a recovery. This leads to:

Timefinal = TimeFF +
Timefinal

µ

(
D + R +

T
2

)
.

Let Waste[fault] be the fraction of the total execution time that is lost because of faults:

Waste[ f ault] =
Timefinal − TimeFF

Timefinal
⇔ (1−Waste[ f ault])Timefinal = TimeFF

We derive:

Waste[ f ault] =
1
µ

(
D + R +

T
2

)
. (2)

Equations (??) and (2) show that each source of waste calls for a different period: a large period for
Waste[FF], as already discussed, but a small period for Waste[ f ault], to decrease the amount of work
to re-execute after each fault. We need a trade-off.

7. Express Waste in terms of Waste[FF] and Waste[ f ault].

8. Replace Waste[FF], Waste[ f ault] in the above formula of Waste.

Let u = C
(
1− D+R

µ

)
, v = D+R−C/2

µ , and w = 1
2µ .

Then, Waste = u
T + v + wT is minimized for T =

√
u
w . The First-Order (FO) formula for the optimal

period is thus:

TFO =
√

2(µ− (D + R))C. (3)

Ultimately, with some extra mathematics we can see that the optimal checkpointing period is TFO =√
2µC + o(

√
µ).

We now look into another method to calculate the optimal TFO.
First we show how to compute the expected time E(Time(T − C, C, D, R, λ)) to execute a work of
duration T − C followed by a checkpoint of duration C, given the values of C, D, and R, and a fault
distribution Exp(λ).
We should show the proposition below

Proposition 1.
E[Time(T − C, C, D, R, λ)] = eλR

(
1
λ + D

)
(eλT − 1).

For simplification, we write Time instead of Time(T − C, C, D, R, λ)

9. Write a recursive relation for Time

10. Using the previous question, write E[TIME]
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11. Calculate E[TimeLOST]

12. Compute E[TimeREC]. Note that there can be no fault during D but there can be during R (Hint:
reuse the equation for )

13. Plug E[TimeREC] and E[TimeLOST] to the equation for E[Time]

Now we know the expected time for a sole T. Splitting the work into k checkpoints, we have T =
TimeBASE

k . With some maths and the above proposition we can find TFO.

14. Intuitively explain why it makes sense to use the same T for checkpointing, and not different
periods T1, T2, . . .

Exercice 2. Connexe
Un graphe non-orienté G = (V, E) sur n sommets est connexe si, pour tous sommets u et v, il existe un
chemin de u à v. Autrement dit, le graphe n’est pas connexe si l’on peut partitionner V en (A, B) de
telle sorte qu’il n’existe aucune arête entre A et B.

1. Prouver que si p = (2 + ε) log n/n avec ε > 0, alors la probabilité qu’un graphe choisi aléatoire-
ment dans Gn,p soit connexe tend vers 1 quand n tend vers l’infini.

Exercice 3. Théorème de Mycielski
Recall that the chromatic number χ(G) is the smallest number of colors needed to color the vertices of
G such that any two adjacent vertices have different colors. Clearly, graphs with large cliques have a
high chromatic number, but the opposite is not true. The goal of this exercise is th prove Mycielski’s
theorem, which states that for any integer k ≥ 2, there exists a graph G such that G contains no
triangles and χ(G) ≥ k.

1. Fix 0 < ε < 1
3 and let G be a random graph on n vertices where each edge appears independently

with probability p = nε−1. Show that when n tends to infinity, the probability that G has more
than n/2 triangles tends to 0.

2. Let α(G) be the size of the largest independent set of G (A set of vertices X is independent if there is
no edge between any two vertices of X in G). Show that χ(G) ≥ n/α(G).

3. Let a = 3n1−ε ln n. Show that when n tends to infinity,

P(α(G) < a)→ 1.

Deduce that there exists n and G of size n such that G has at most n/2 triangles and α(G) < a.

4. Let G be such a graph. Let G′ be a graph obtained from G by removing a minimum number of
of vertices so that G′ does not contain any triangle. Show that

χ(G′) >
nε

6 ln n

and conclude the proof of Mycielski’s Theorem.
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