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TD n°8 (Markov Chain)

Exercice 1. The first use of stopping theorem for martingales

Theorem (Optional stopping theorem (Doob’s Theorem)). Let (M,) be martingale (resp. sub-/super-) for
(Xy) and T be stopping times for (X,,). If at least one of the following conditions holds :

1. T=< N a.s., where N e N

2. T<ooandVneN,|M,| <C a.s., whereC e R,

3. E(T)<ooandVneN, |M,.1 —M,|<C a.s., whereCeR,
ThenE(M7) =E(My) (resp.= | <)
The first application : let (X},) be symmetric walkon Z, 0<i < N, let T = 7|9 n) be time absorbed by 0 or N.
Propose the martingales to calculate the following values :

— The probability of absorption E;(T) starting from i, i.e. P;(Ty < +00),
— The mean of absorption E;(T) starting from i.

Exercice 2. Foster theorems
Given the following theorems

Theorem (First Foster theorem). Let (X,,) be a homogeneous irreducible Markov chain of general term p; ;
on a countable set E. If there exists a function h : E — R*, a finite set F and a constant € > 0 such that :

Y pikh(k) <oco forallieF
keE

Y pixh(k) <h(i)—¢ foralli¢F,
keE

then (X,) is positive recurrent.

Theorem (Second Foster theorem). Let (X,;) be a homogeneous irreducible Markov chain of general term
pi,j on a countable set E. If there exists a function h: E — R" and a finite set F such that :

E(h(X)) - h(X)|Xo = i) < +oo Vi¢F

h(jo) > ma}gch(i) forsome jy ¢ F
1€

Y pikh(k) = h(i) foralli¢F
keE

then (X,,) is not positive recurrent.

Consider the following random walk on N : if X;; = 0 then X, = 1 with probability 1, and if X, = 1, then

Xn,+1 withprob. p
Xn+1= .
X,—1 withprob.1-p

Using Foster theorems, determine for which values of p this Markov chain is positive recurrent.

Exercice 3. Aloha Stabilization
Aloha is a communication protocol on a canal shared by several stations unaware of each other. Trans-
missions and retransmissions can only start at times of type kA with k integer and A > 0 the width of a slot.
When two stations try to transmit simultaneously messages, they interfere and none is actually transmitted.
These conflicts are detected by stations. The protocol is the following :

— Fresh messages systematically try to pass right after their arrival.



— In case of conflict, each concerned station independently tries to retransmit its message at the next
slot with probability 0 <v < 1.

We denote by A, the number of fresh messages arrived at the beginning of slot n and X,, the number of

messages delayed at slot n. We assume that the r.v. A, are i.i.d. and we set a; = P(A, = 1), A = E(A,) =

Z(i)ZO i a;.
A - Aloha Instability :

1. Give the probability b; (k) that i stations try to retransmit if k stations are in conflict.

We will assume to simplify that the retransmission of a message depends only on itself and not on its sta-
tion. This has the weird consequence that two messages from the same station can conflict. Under this
assumption, b; (k) represents the probability that i messages are retransmitted if k ones are delayed.

2. Give the probability py; to pass from k to I delayed messages.
3. Show that this protocol is unstable (i.e., (X},) is not positive recurrent).
4. What does it actually means for the protocol?

B - Aloha Stabilization :
Instead of using a retransmission policy with v fixed, we will try to reach stability using v(k) depending on
the number of delayed messages. We will show that the following condition implies stability.

A< hmk inf (by(k)ap+ bo(k)ay)

—+00

It is equivalent to the existence of € > 0 and a finite set F < N such that
A< bi(k)ag+by(k)ay —e forall k¢ F.

5. Under this assumption, prove the stability of the protocol.

6. Study the extrema of g (v) = (1 - v)¥a; + kv(1 —v)*La.

k=1 4,
7. Noticingthat( k-1 ) koo

Tl exp(Z—[l) — 1), give a sufficient stability condition.

8. Explicit this condition when A;, follows a Poisson distribution.

9. What is the drawback of this policy?



