
Lecture 4 - Simplex algorithm:
Initialization and termination

Optimization and Approximation - ENS M1

Nicolas Bousquet

During the previous lectures, we have seen the global shape of the Simplex algorithm. It can be
summarized as follows:

Procedure 1 Scheme of the Simplex Algorithm

Start from a basic feasible solution
while the solution is not optimal do

Apply the ratio test.
Choose a pivot (variable entering in the basis).
Apply the ratio test to find a variable leaving the basis
Apply the pivoting operation

end while
Return the optimal solution and the optimal value.

First notice that, the Simplex algorithm is not “an” algorithm but a family of them. Indeed, each
different rule that chooses a pivot might lead to a different algorithm. Moreover we have not how we
can find a BFS and when we have to stop.

The goal of today’s lecture is the following:

• Detail the stopping rule.

• Explain how we can find a BFS.

• Study the different pivoting operations and their consequences on the complexity of the Simplex
algorithm.

• Discuss the complexity (number of pivots) of the Simplex algorithm.

1 Stopping rules

We have already seen a criterion to end the Simplex algorithm during the last lecture. However, there
is a second way the Simplex algorithm can stop. In this Section, we will see both stopping rules.

Assume that the Linear Programming is written in the following way:

max cTNxN + S(
I A

)(xB
xN

)
= b

x ≥ 0

where b ≥ 0, xB is the vector of a basic feasible solution. So in particular, when xN = 0, we obtain a
feasible solution of value S. We can stop when:

1. If cN ≤ 0, then the optimal value equals S.

1

2. If there exists a coefficient ci of cN such that ci is positive and all the coefficients of the column of
xi in

(
I A

)
are non-positive. Then the solution is infinite

In what follows, we prove that the claim above is true.

1.1 Point 1: finite optimal value

Let xB = b and let xN = 0. We have (
I A

)(xB
xN

)
= b.

Moreover the value of this solution is S. Now assume that there exists a strictly better solution y =(
yB
yN

)
. Since yN ≥ 0 and since c ≤ 0, we have cTNyN ≤ S, contradicting the fact that it is a better

solution.

1.2 Point 2: infinite optimal value

Assume now that there exists a coefficient of cN which is positive, say it corresponds to the variable xi.
Assume moreover that all the coefficients of the column of A corresponding to xi are non-positive.

Let us assume that the current basis is x1, . . . , x`, the coefficients of column of xi are aji and the RHS
is bj . The current solution is xj = bj for j ≤ ` gives a feasible solution. As well as:

xj = bj + ajiM ≥ 0 for j ≤ `

xi =M ≥ 0

for any value of M ≥ 0 since aji is non-positive for every i. Since this solution has value S+ ciM where
S is the value of the current solution, this value tends to infinity when M goes to infinity. So we can
find an optimal solution of arbitrarily large value.

So to conclude: if the ratio test does not give any constraint, the optimal solution is infinite.

Illustration. Let us see on some example what really happens in this case. Consider the following LP:

max(2x1 + x2)

Subject to:

x1 − x2 ≤ 10

2x1 − x2 ≤ 40

x1, x2 ≥ 0.

The addition of slack variables permits to write the LP in standard form. The two slack variables are
called x3 and x4 and the corresponding tableau is

2 1 0 0 0
1 −1 1 0 10
2 −1 0 1 40

Let us first put x1 into the basis. One can note that x3 leaves the basis (since x1 ≤ 10 is given by the
first constraint). We obtain the tableau:

0 3 −2 0 −20
1 −1 1 0 10
0 1 −2 1 20

Since x2 has a positive coefficient in the objective function, we have no reach the optimal value. This
pivoting operation ensures that x2 enters in the basis and x4 leaves the basis.

2

0 0 4 −3 −80
1 0 −1 1 30
0 1 −2 1 20

Again the tableau is not optimal. Indeed the coefficient of x3 is positive. So we want to apply a pivot
operation on x3 (the coefficient of x4 is negative so it is not possible to pivoting on x4). But the problem
is the following: the constraints does not give any constraint on x3. Indeed:

−x3 ≤ 30⇒ x3 ≥ −30

−2x3 ≤ 20⇒ x3 ≥ −40

So it means that, if x3 enters in the basis, then we can arbitrarily increase x3 without violating any
constraint. Since the coefficient in front of x3 is positive, it means that we can arbitrarily increase the
value of the objective function without violating constraints. Thus the optimal value is unbounded !

More formally, what we have is that for any nonnegative δ, the point (30+ δ, 20+ 2δ, δ, 0) is feasible.
Since the objective function at this point has value 80 + 4δ, we see that the problem is unbounded.

Clearly, unboundedness of a problem can occur only when the feasible region is unbounded, which,
unfortunately, is something we cannot tell in advance. In the above example, we detected unbounded-
ness when we encountered a pivot column that does not contain any positive entry. More generally, we
can in fact declare a problem as unbounded if any (nonbasic) column, not necessarily associated with
the entering variable, is identified to have the above-stated property at the end of an iteration. Referring
back to the initial tableau, we see that, indeed, the x2-column had this property. Therefore, we could
have concluded that the problem is unbounded at the outset.

Note finally that if the function is a minimization function, then the criterion are reversed.

2 Initialization - Big M and Phase I/II

2.1 Artificial variables

We have said that the simplex algorithm needs an initialization. However finding a basic feasible so-
lution for starting the simplex algorithm is not so simple. Indeed, we can try all the possible basis and
try to determine if they are basic feasible solutions or not. But this operation may be very long (it can
take an exponential time). Let us now see how we can artificially create a basic feasible solution using
additional variables. Note nevertheless that this operation has a cost: it creates new solutions which
were not solution in the original LP. Thus we will have to be sure that we will finally find an optimal
solution which is feasible in the original LP. We will see two methods which ensure that it is possible:
the big M method and Phase I/ Phase II procedure.

Let us first introduce the notion of artificial variables. Before doing that, let us came back to the
dovetail problem where slack variables have been introduced:


3 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1



x1
x2
x3
x4
x5
x6

 =


18
9
7
6



For this problem, we have seen that it is simple to find an basic feasible solution for starting the simplex
algorithm: we just have to consider the set BI = {3, 4, 5, 6}. Indeed the restriction of the matrix to this
set of columns induces a squared matrix which is the identity matrix. Since b is nonnegative, we obtain
a basic feasible solution.

Nevertheless in the general case, we are not sure that there exists such a square identity matrix (and
it probably will not be the case).

3

When it is not the case, we can have trouble for initializing the simplex algorithm. Consider for
instance the following LP:

maxx1 + x2

such that
−x1 − x2 ≤ −5
x1 + 2x2 ≥ 3

3x1 + 5x2 ≤ 20

x1, x2 ≥ 0

When we add the slack and the surplus variables and we multiply by -1 in order to obtain b ≥ 0 we
have:

x1 + x2 − x3 = 5

x1 + 2x2 − x4 = 3

3x1 + 5x2 + x5 = 20

x1, x2, x3, x4, x5 ≥ 0

Taking as a basis {x3, x4, x5} is not a good idea since it would lead to x3 = −5 which is negative.
So this basis is not a basic feasible solution. In order to find a basis, we will add artificial variables for
the each constraint without variables (i) appearing in only that constraint (ii) with a positive coefficient.
Usually it means that we do not have to add artificial variables for ≤ constraints (with positive RHS)
and we add artificial variables for equality of ≥ constraints.

Illustration. In this set of constraints, we add two artificial variables u1, u2:

x1 + x2 − x3 + u1 = 5

x1 + 2x2 − x4 + u2 = 3

3x1 + 5x2 + x5 = 20

x1, x2, x3, x4, x5, u1, u2 ≥ 0

Now, by construction, for each constraint there exists a variable x such that the coefficient of x is
positive and x appears in precisely one constraint. Now consider BI a set of variables such that for
each constraint BI contains precisely one variable of this type. Note that since b ≥ 0, this base is a basic
feasible solution. So, by adding this set of solution, we have solved our “problem”, we can find a basic
feasible solution for starting the simplex algorithm. In this case we have BI = {u1, u2, x5}.

Be careful ! The addition of these artificial variables is not priceless ! Indeed we have seen that adding
the slack or the surplus variables does not affect the shape of the feasible region. In some sense, by
adding these variables, we just modify the representation of our problem but we do not modify the
solution themselves. Adding artificial variables DO MODIFY the structure of the feasible region. In
other words, the projection of a solution with artificial variables on the original LP is not necessarily
a solution of the original LP. Note that it differs from the behavior of the slack / surplus variables for
which a projection of a solution was a solution of the original LP.

In particular, if ui > 0 then the set of variables is not a solution of the initial LP anymore. Note
nevertheless that if ui = 0 for every i then the resulting solution is a feasible solution (actually, it is an
equivalence).

Observation 1. The projection of a solution of the LP with artificial variables is a solution of the LP in standard
form iff all the artificial variables equal 0.

Moral. We have seen a method which permits to compute a basic feasible solution. Nevertheless, this
method can introduce some new solutions which are not desired. Let us show how we can treat these
artificial solutions in order to be sure that, at the end, we obtain a real feasible solution.

4

2.2 Big M method

When ui = 0 for every i, then the resulting solution is a feasible solution of the original LP in standard
form. So if we can ensure that at the end of the simplex method all the variables ui equal zero, then we
are done. To accomplish this, we put a very large negative cost, say −M , where M is a big positive
integer (which explains the name of the method), on every variable ui. How big M should be depends
on the problem. It should be much larger than any other numbers we encounter while running the
simplex method.

So if we apply this method to our example, the problem becomes:

max(x1 + x2 −Mu1 −Mu2)

x1 + x2 − x3 + u1 = 5

x1 + 2x2 − x4 + u2 = 3

3x1 + 5x2 + x5 = 20

x1, x2, x3, x4, x5, u1, u2 ≥ 0

Nevertheless there are two main drawbacks to the use of the big M method:

• We do not know a priori how large M must be in order to be sure that all the variables ui equal
zero (or at least tends to 0) at the end of the algorithm. Recall that M can be much larger than any
number in the input.

• It may lead to numerical difficulties. Indeed, because of the bounded precision in the way com-
puters represent floating-point numbers, using values of M that are much larger than other data
of the input can become problematic. For example, if M is large, a computer might not be able to
distinguish M and M + 1.

• Maybe the optimal solution will never put any of the ui’s to 0 and then we will have to slightly
approximate the solution.

2.3 Phase I/II procedure

When have seen that we have to introduce artificial variables and that a solution of the optimization
problem will provide a feasible solution of the problem without artificial variables if and only if the
artificial variables equal zero. So there is a simple solution: what about changing the objective function
and replace it by a minimization of the sum of the artificial variables. This idea seems weird at first
glance since we completely loose our initial objective function, but it has one interest: we are sure that
if the initial problem has a solution then this solution will have value 0 (i.e. the artificial variables will
have value 0). And then this solution will provide a basic feasible solution of the initial LP without
artificial variables. So we just have to launch the LP with this new basic feasible solution in order to
find an optimal solution of the original LP.

Let us illustrate this method. The LP after the introduction of the artificial variables is the following:

minu1 + u2

x1 + x2 − x3 + u1 = 5

x1 + 2x2 − x4 + u2 = 3

3x1 + 5x2 + x5 = 20

x1, x2, x3, x4, x5, u1, u2 ≥ 0

So we replace the objective function by a minimization of the sum of the artificial variables, i.e.

minu1 + u2 = max−u1 − u2

The advantage of this method is indeed that it finds an optimal solution. The main drawback is that
we have to solve two LP instead of one, which indeed increases the running time of the algorithm.

5

3 Simplex termination

3.1 Degeneracy and termination

Up to this point, we have only consider “nice” linear programs, i.e. LP which ends “correctly”. Let us
see that the situation is not necessarily so great in general. Consider the linear program:

max 2x1 + x2

under the constraints:

4x1 + 3x2 ≤ 12

4x1 + x2 ≤ 8

4x1 + 2x2 ≤ 8

x1, x2 ≥ 0

Let us first transform this problem into a standard LP. The tableau corresponding to the standard
form is the following:

2 1 0 0 0 0
4 3 1 0 0 12
4 1 0 1 0 8
4 2 0 0 1 8

Let us first add x1 as a basic variable. First note that there is a tie for the ratio test between the second
and the third row. Assume that we take the second row. So the variable x4 leaves the basis (and the
variable x1 enters in it). We obtain the following tableau:

0 1
2 0 − 1

2 0 −4
0 2 1 −1 0 4
1 1

4 0 1
4 0 2

0 1 0 −1 1 0

The current basic feasible solution is the point (2, 0, 4, 0, 0). Note that the variable x5 equals zero (which
is not really surprising, why? hint: think about the tie). We then say that x5 is degenerate basic variable.
There is one variable, x2 which has a positive coefficient in the objective function. So we can try to add
x2 in the solution.

The “problem” is that the ratio test ensures that x2 ≤ 0 (which is not really a problem, we can
nevertheless make the pivot). After the pivot we obtain:

0 0 0 0 − 1
2 −4

0 0 1 1 −2 4
1 0 0 1

2 − 1
4 2

0 1 0 −1 1 0

Note that since x2 = 0 in the ratio test, the value of the objective function has not increased even if
we have made some pivot operation. More precisely the basic feasible solution after the pivot operation
is still the point (2, 0, 4, 0, 0). The fact that two basis give the same point of the polyhedron is called the
degeneracy.

Note that in this case, it does really have some “effect” on our algorithm since the current bfs at
the end is precisely the optimal solution. But in the general case, it is not the case. Even worse, it can
happen that the Simplex algorithm make “cycles”, i.e. that you pass through the same basis several
times (if your choice is bad). If the choice of variables leaving and entering the basis is deterministic,
it means that the Simplex algorithm might just cycle on this sequence of basis and will never end....
which is fairly bad ! Fortunately, these kinds of cases rarely happen in practice and can be avoided
using clever systems of rules, as we’ll see later.

Let us now try to understand geometrically the notion of genereracy. The geometrical representation
of the first LP is given in Figure 1. Notice that three, and not two, constraint equalities pass through

6

2 3

4

Figure 1: Geometrical representation of the degenerated example

the point (x1, x2) = (2, 0). These equations are: x2 = 0, 4x1 + x2 = 8, and 4x1 + 2x2 = 8. Since only
two lines are needed to define such an intersection (indeed a point is just the intersection of two affinely
independent equations of the plane), we see that degeneracy is a manifestation of redundancy in the
information of the data. More formally, any pair of these three equations are enough to find the point
(2, 0).

For example, if we choose x2 = 0 and 4x1+x2 = 8 as the defining equations, then, since the solution
to this pair of equations will automatically satisfy equation 4x1 + 2x2 = 8, and then the value of the
slack variable associated with the inequality 4x1 + 2x2 ≤ 8, namely x5, must turn out to be 0. The
defining equations corresponds to the set of equations which are binding. The sets of equations which
are forced to be binding are the set of variables which are constraint to be equal to zero: the variable x2
and the variable x4 in this case. So this ensures that when x2 and x4 are equal to 0 then the variable x5
is forced to be equal to zero too. It is precisely what we obtained after the first pivot operation.

Similarly, if we choose 4x1 + x2 = 8 and 4x1 +2x2 = 8 as the defining equations, then the inequality
constraint x2 ≥ 0 will turn out to be binding. So when the variables x4 and x5 are non-basic variables,
the variable x2 will be equal to 0, which corresponds to the tableau after the second pivot. Finally, even if
we have not made the corresponding calculations, if we chooce x2 = 0 and 4x1+2x2 = 8 as the defining
equations, then the constraint 4x1+x2 ≤ 8 will be automatically binding and the corresponding tableau
will give the same point.

If the input of the Simplex algorithm is degenerated, then the Simplex algorithm can modify its basis
without strictly improving the objective function since the vertex of the polyhedron considered by the
Simplex algorithm is still the same.

Remark: An example and a pivoting rule on which the Simplex algorithm is cycling will be seen
during the exercise Session.

The simplex method without degeneracy The simplex method with degeneracy
The solution changes after each pivot. The solution may stay the same after a pivot.

The obj. value strictly improves after a pivot. The objective value may stay the same.
The simplex method is guaranteed to be finite. The simplex method may not ends.

Distinct tableaux give distinct solutions. Several tableaux can give the same solution.
The rest of this section is devoted to explain methods to ensure that the Simplex algorithm stops

even with degeneracy.

3.2 Small random perturbations.

A basic feasible solution is called non-degenerate if none of the RHS’ are 0. An LP is non-degenerate if
all its basic feasible solutions are non-degenerate. Pivoting on a non-degenerate basis strictly increases

7

the objective function (since we have assumed that all the basic feasible solutions are non-degenerate,
it means that in every case we will increase our objective function).

Note that there are at most
(
n
m

)
possible basis (which is the number of ways to choose m variables

from n). Hence there is a finite number of such bases. It follows that if our LP is non-degenerate, then
as we pivot from basis to basis, we are strictly increasing the objective function and hence we cannot
obtain twice the same basis. Thus the LP stops in finite time.

If the LP is degenerate (which is often the case), then one may perturb the data slightly to produce a
non-degenerate LP whose optimal solution is very close to the original (if we put a random perturbation
on the coefficient, then the LP has no solution with probability zero). One could then run Simplex
Algorithm in finite time on the perturbed LP, and this solution is almost equal to the optimal solution.
But there is an even better fact: the optimal basis for the perturbated LP (this basis is unique since the
LP is non-degenerated) also is a optimal basis for the initial LP.

There are many distinct forms of the Simplex which choose the entering or leaving variables differ-
ently. The version we used was simply to pick the entering variable that gives the biggest bang for the
buck: i.e. choose xs such that cs = maxj{cj : cj > 0}.

3.3 Bland’s rule

Between 1946 and 1977, no general pivoting rules ensured that the Simplex Algorithm ends in finite
time except small perturbations. In 1977, Bland proposed (and proved) the first rule that guarantees
that the Simplex algorithm stops in finite time.

The Brand’s rule is defined as follows:

• Among all candidates for the entering variable in the set BI of basic variables (i.e., those with a
positive coefficient in the objective function), choose the one with the smallest index, say s.

• Among all the constraints for which the minimum ratio test results in a tie, choose the constraint
r for which the corresponding basic variable has the smallest index, jr.

Bland showed that using these conditions, the Simplex Algorithm runs in finite time even without any
perturbation.

Before proving it, we need the following lemma (left as an exercise):

Lemma 2. Assume that the Simplex algorithm do not stricly improve the objective value at step t. Then the two
solutions correspond to the same point.

The proof of this lemma is left as an exercise. Let us now prove that Bland’s rule stops in finite time.
The proof of this statement is surprisingly not that simple.

Theorem 3. Using Bland’s rule for the pivot operation, the Simplex algorithm does not cycle.

Proof. Assume by contradiction that the Simplex algorithm is cycling. Let us denote by B1, . . . , Bk the
basis of a cycle. Between two consecutive basis, there is only one variable leaving the basis and one
variable entering in the basis. Amongst all variables leaving the basis during the procedure, let xt be
the one with the largest index. Witout loss of generality we can assume that it left the basis between B1

and B2. And let xs be the variable entering in the basis in B2. A step B1 we have:

xj = bj −
∑

ajixi for all j ∈ B

z = C +
∑
i/∈B

cixi where c is the current value of the solution. (1)

Since we are cycling, xt must enter in some basis. Let B′ be a basis on which xt is entering. We have

z = C +
∑
i

c′ixi (2)

where c′i = 0 is i ∈ B′. Indeed the coefficient for variable of the basis is equal to 0 at this step of the
simplex algorithm.

8

Note that we did not improve the solution so C is the same. Moreover the two objective functions
are the same (the system of equation are equivalent), the value of z of the objective function is the same
in (1) and (2) (see TDs if you are not convinced). Since

xs =y

xi =0 for all i /∈ B, i 6= s

xi =bi − ai,sy for all i ∈ B

So we have:
C + csy = C + c′sy +

∑
i∈B

c′i(bi − aisy)

⇔ y(cs − c′s +
∑
i∈B

c′iais) =
∑

i∈B,i6=s

c′ibi.

Since the former equation is true for any value of y, we have:

cs − c′s +
∑
i∈B

c′iais = 0

Let us now show that this leads to a contradiction.

• First notice that since s is entering in the basis at step B1, we have cs > 0 (by definition of Bland’s
rule).

• Moreover xt is entering at step B′ and by maximality of t we have c′s ≤ 0.
Indeed if xs ∈ B′ the c′s = 0 (by the simplex algorithm) or xs /∈ B′ and c′s ≤ 0 by maximality of t
(and xt is entering).

Thus we have ∑
i∈B

c′iais < 0⇒ there exists r ∈ B such that c′rars < 0

The variable xr is basic in B1 and non-basic in B′. So it must leave the basis at step B′′ where B′′ is
between B1 and B′ in the order. Note moreover that:

• r ≤ t by maximality of t;

• r 6= t. Indeed c′t > 0 (xt enters in the basis at step B′) and ats > 0 (xt leaving the basis at B1). Thus
atsc

′
t > 0

We now have all the ingredients to conclude. Since xr and xt are non basic in B′, Bland’s Rule ensures
that c′r ≤ 0. Thus ars must be positive. Finally

xr = 0 · · · − arsxs = 0

(the last equality comes from Lemma 2). So xr is a candidate for leaving B1 (it reaches the minimal
value for the ratio test since it gives xr ≤ 0), contradicting the definition of t !

Since there is a finite number of basis, the Simplex algorithm stops as long as there is no cycle.

4 Other leads: Complexity and multiple solutions

These two problems will be treated during the exercise session. Let us nevertheless briefly discuss them
here.

9

Running time Empirically, the number of iterations needed to solve the LP usually lies between 1.5
and 2 times the number of constraints (i.e., between 1.5m and 2m) when we are using classical pivoting
rules. Nevertheless it could be worse. Actually, the number of steps can be exponential in the num-
ber of variables (recall that the number of vertices of a polytope can be exponential in the number of
constraints, for instance for the cube).

Examples on which the Simplex algorithm might run in exponential time will be seen treated the
exercise session. Actually even the Bland’s rule might need an exponential running time. It is still
open to determine if the Simplex algorithm runs in polynomial time in the worst case for some “good”
pivoting rule choice.

Multiple solutions Determining if a LP has a unique or multiple optimal solutions might be read on
the final tableau of the LP. For more details, go to the exercises session !

Final remarks: Advantages of the Simplex Algorithm. The simplex algorithm will take as data a
LP in standard form (called canonical form in Bradley, Hax, Magnanti) and solve it. As we already
mentioned, the Simplex Algorithm will consist in looking for a local maximizer which is also a global
maximizer. The simplex algorithm has many advantages:

• It is robust since it can solve any linear program (unbounded linear programs or linear programs
with empty feasible regions). Moreover it can detect redundant constraints.

• It is self-initiating since it uses itself to generate an initial feasible solution or show that the problem
does not have any solution.

• It provides more information than the optimal solution. It indicates how the optimal solution is mod-
ified in function of the data (sensitivity analysis).

Before introducing the simplex algorithm, we need the following notion of standard form.

4.1 Historical insight on the Simplex Algorithm

1947 Simplex Algorithm (Dantzig)
1953 First examples of cycling (Hoffman)
1960’s Interest in achieving a polynomially bounded number of pivots. 1972 Klee Minty give their
squashed cube example which shows that Dantzig’s rule may take exponentially many pivots.
1977 Bland’s Rule: first finite termination rule.
1992 Steepest Edge (Forrest Goldfarb) pivot rule proves to be very successful in practice.
2011 Friednman shows that Zadeh’s (least recently used) pivot rule may take 2θ(n) pivots.
2011 Friedman, Hansen, Zwick show a similar lower bound for Simplex with Random Edge pivoting.

10

