
Lecture 1 - Introduction to Optimization

Optimization and Approximation - ENS M1

Nicolas Bousquet

Lectures: Tuesday, 10.15-12.15.
Instructor: Nicolas Bousquet.
Exercise sessions: Friday, 13.30-15.30
Intructors: Florent Brehard et Luc Pellissier
Website: pagesperso.g-scop.grenoble-inp.fr/~bousquen/OA/
Email: nicolas.bousquet@grenoble-inp.fr
Last update: September 18, 2017

1 Introduction to optimization problems.

1.1 Optimization problems.

All along these lectures we will consider optimization problems. An optimization problem is a problem
of the form

maximize f(x) subject to x ∈ F

where

• F ⊆ Rn is called the feasible region.

• f : F → R is called the objective function.

• x is the vector of decision variables.

Optimization problems cover a large scope of mathematics (from statistics to discrete mathematics in-
cluding financial mathematics...). However all the optimization problems cannot be solved in the same
way and rather different approaches are necessary in order to tackle them. In particular, during these
lectures we will consider two kinds of problems: linear problems and non-linear problems.

Note that we assume the input of the function f is in R. Nevertheless, we can imagine more general
functions f with input values in various other sets or fields. For instance, the set F can be included in
a boolean space, or in the set of integers, or it could be the complex space. In all these cases, decision
variables can easily be “represented” as real numbers. During these lectures, we will concentrate on the
case where F is either R or N.

One can also note that if we replace the function f by its opposite function (−f), the maximization
problem becomes a minimization problem. Indeed maximizing f(x) subject to x ∈ F obviously corre-
sponds to minimizing − f(x) subject to x ∈ F in the sense that the set of decision variables x reaching
the maximum in the first case is precisely the set of vectors of decision variables reaching the minimum
in the second one (and the optimal value of the minimization problem is the opposite of the optimal
value of the maximization problem). In mathematical programming, results are usually stated from a
maximization point of view, but the above remark ensures that any maximization result can be easily
transformed into a minimization result.

When the feasible region is empty, we say that the optimization problem is unfeasible. When a vector
of decision variables x is in F , we say that x is feasible. There is a feasible solution if there exists a feasible
vector x, i.e. F is not empty. A couple (x, f(x)) is an optimal solution of a maximization problem if x ∈ F
and f(x) reaches the maximum value. By abuse of notations, we will often say that x is an optimal

1

solution. When we consider maximization problems, we often say that x ∈ F is a maximizer (resp.
minimizer) if f(x) is maximum (resp. minimum). If x is an optimal solution then f(x) is the optimal
value.

However the maximum may not be reached. We then say that the optimal value is unbounded if for
every real number A, there exists a solution (x, f(x)) such that |f(x)| ≥ A. Note that if the optimal
value is unbounded, we say that the optimal value is equal to +∞ for maximization problems and −∞
for minimization problems. (we will assume that the maximum is reached when the optimal value is
bounded, which is essentially correct in general and totally correct when F is bounded or when we
restrict to Linear Programming).

An optimization problem is unconstrained if F = Rn. Usually unconstrained optimization problems
are quite different from constraint ones but are not necessarily simpler. Sometimes, even determining
if the problem is feasible is not so simple (we will see that a trick will be necessary in order to initialize
the solutions of the simplex algorithm).

1.2 Optimization

Optimization has two main branches. The first one is discrete optimization where the feasible regions
are finite (in particular, it will be the case when the decision variables lie on a N or any discrete sets)
and continuous optimization where feasible regions are continuous (understand that they are somehow
isomorphic to balls in real spaces). Surprisingly, we will see that linear continuous optimization can
be much simpler (in terms of computational complexity) than discrete optimization when we want to
optimize over linear functions.

1.3 Prototype of optimization problem.

A general prototype for an optimization problem is

maximize x∈Rnf(x) subject to
{
fi(x) ≤ bi for every i ≤ m.

xj ≥ 0 for every j ≤ n.

The function f is the objective function while the functions fi’s (and the inequalities xj ≥ 0) are the
constraints of the problem. The constraints xj ≥ 0 are the non-negativity constraints. For every i, the
function fi is a function from Rn to R. Given this set of constraints, we can define the feasible region as:

F = {x ∈ Rn such that ∀j ≤ n, xj ≥ 0 and ∀i ≤ m, fi(x) ≤ bi}

All along these notes, all the vectors xwill be column vectors and we will denote by xT the transpose
row vector of x. 1

The non-negativity constraints naturally arise in almost all the real-world problems. Indeed, the
decision variable xj usually represents the number of produced items or the proportion of a given
ingredient, and thus obviously cannot be negative.

2 Linear Programming and Integer Linear Programming.

2.1 Introduction to LP

Assume that we have an optimization problem of the above shape. If the function f and all the functions
f1, . . . , fm are linear, the optimization problem is a Linear Programming problem (or LP for short). In
other words a LP consists in optimizing a linear function under some linear constraints.

If at least one of these functions is not linear, it is a non-linear program problem. When the constraint fi
is linear, the constraint fi can be rephrased as follows:

∑n
i=1 ai,j ·xi ≤ bi where the ai,j are real numbers.

So the constraint fi can be seen as the product of a row vector of size n (the vector (ai,1, . . . , ai,n)) with
the vector x. Note that non-negativity constraints are also linear constraints and thus can similarly be
transformed.

1For a pair of vector x, b, by x ≤ b we mean that each coefficient of x is less than or equal to the corresponding coefficient of b.

2

Let us denote byA the matrix whose row i is the vector (ai,1, . . . , ai,n). Let bT be the vector (b1, . . . , bm).
The vector b is called the vector of constraints. We can similarly create a vector c, called the objective vector,
of Rn whose coefficient i is the coefficient of xi in the objective function. Note that n is not necessarily
equal to m. So finally, the LP can be rephrased in the following way:

maximize x∈RncTx

subject to
Ax ≤ b and

xj ≥ 0 for every j

In the following, bwill always denote the vector of constraints and cwill denote the objective vector.

Integer Linear Programming (ILP) is the important special case where the functions fi and f are linear
and the vector of decision variables x is additionally constrained to lie in Zn. In this case, the domain
of our prototype model changes from Rn to Zn:

maximize x∈ZncTx subject to x ∈ Rn such that Ax ≤ b and xj ≥ 0 for every j

Note that obviously, the maximum of a linear program and the maximum of the “corresponding”
integer linear program are not necessarily the same. Consider for instance the following simple linear
program

maximize (x1,x2,x3)∈R3(x1 + x2 + x3) subject to


x1 + x2 ≤ 1
x1 + x3 ≤ 1
x2 + x3 ≤ 1

x1, x2, x3 ≥ 0

By setting x1 = x2 = x3 = 1
2 , we obtain a vector x which is feasible. And the value of this solution is 3

2 .
So the optimal value of this LP is at least 3

2 . On the contrary, if we assume x1, x2, x3 to be non-negative
integers, then at most one of them can be positive and the constraints ensure that its value is at most
one. So the optimal value of the ILP cannot necessarily reach the value of its corresponding LP. We will
see further in these lectures that it is even worse.

If some of the xi ’s are integers and others are real numbers, it is a mixed integer programming (MIP)
problem and the domain defines which variables are real, and which are integer. If we allow integer,
non-integer variables, and nonlinear constraint functions and objective function, then we have the class
of mixed integer nonlinear program (MINLP) which has only recently become an active area attracting
leading researchers.

2.2 Modelization of a production problem

All the notions introduced in this section will be illustrated on the following simple example of “Dove-
tail”. This example will be used several times all along these lectures.

The company ‘Dovetail’ produces two kinds of matches: long ones and short ones. The company
makes a profit of 300$ for every 100, 000 boxes of long matches, and 200$ for every 100, 000 boxes of
short matches. The company has one machine that can produce both long and short matches, with a
total of at most 9 (×100, 000) boxes per year. For the production of matches the company needs wood
and boxes: 3 cubic meters of wood are needed for one box of long matches, and 1 cubic meter of wood
is needed for one box of short matches. The company has 18 cubic meters of wood available for the
next year. Moreover, ‘Dovetail’ has 7 (×100, 000) boxes for long matches, and 6 (×100, 000) for short
matches available at its production site. The company wants to maximize its profit in the next year.
It is assumed that ‘Dovetail’ can sell any amount it produces. To write this production problem in
mathematical terms, we first introduce the decision variables x1 and x2 :

• x1 is the number (×100, 000) of boxes of long matches produced during the next year.

• x2 is the number (×100, 000) of boxes of short matches produced during the next year.

3

The company makes a profit of $300 each time they produce 100, 000 boxes of long matches. So their
profit when they produce x1 ·100, 000 boxes of long matches is $300 ·x1. Similarly, the company makes a
profit of $200 each time they produce 100, 000 boxes of long matches. So their profit when they produce
x2 · 100, 000 boxes of long matches is $300 · x2. Since Dovetail wants to maximize the profit during the
upcoming year, the objective function is the following:

max
(x1,x2)∈R2

300 · x1 + 200 · x2.

Note that maximizing a function f precisely corresponds to maximizing the function λf for every pos-
itive λ. So, for simplicity, we consider the objective function

d = max
(x1,x2)∈R2

3 · x1 + 2 · x2.

And we will keep in mind that if the optimal value is d then the maximum profits of Dovetail is $100d.
Let us now consider the constraints. The statement mentioned several constraints: the number of

boxes of long and short matches, the quantity of wood, the productivity of the machine. First, the
company has 18 cubic meters of wood available for the next year. The production of 100, 000 long
matches boxes needs 3 cubic meters of wood and the production of 100, 000 boxes of short matches
needs 1 cubic meter of wood. Since only 18 cubic meters of wood are available, we have the constraint:

3 · x1 + x2 ≤ 18. (1)

Moreover, since the machine can produce at most 9 (×100, 000) boxes of matches a year, we have the
following constraint (due to the machine) which is:

x1 + x2 ≤ 9. (2)

Since there are only 7 (×100, 000) boxes of long matches available on the production site, we cannot
produce more 7 (×100, 000) long matches boxes. So:

x1 ≤ 7. (3)

Similarly we have
x2 ≤ 6. (4)

Finally, the amount of produced boxes is non negative so both x1 and x2 are non-negative.

x1, x2 ≥ 0

Note that the function we want to maximize and all the constraint functions are linear. Moreover
we consider that, since the amount of boxes we produce is huge, a real solution will provide a good ap-
proximation of an optimal integer solution. Let us now describe how we can solve this linear program.

Linear vs Integer Linear Programming for production. When we solve a LP, we usually solve it using
a solver where variables are real values. There are two reasons for that: the first one is that the algorithm
are simpler and more efficient. The second is that, in most of the cases, we are optimizing on variables
whose values will be thousands or millions. Thus the rounding approximation will not be a problem
for production. In other words, we do not lose the quality of the production by rounding our solution.

In many other cases, we will see that the gap between the optimal solution using real variables
and the optimal solution using integer variables will be very different. This gap between optimal real
solution and integral solution is called the integrality gap.

2.3 Modelization of Discrete Mathematics problems

All along the course, we will use the notion of graph (or network). A graph G = (V,E) is a pair where
V is a set of “points” (not in a geometric but a combinatorial way) called vertices, and E is a set of edges
which is a subset of pairs of vertices. Graphs are standard tools to represent many discrete objects that
will be introduced all along the course. Many optimization problems have been studied on graphs.

4

Vertex Cover. One of them is the VERTEX COVER problem. A vertex cover is a subset of vertices such
that each edge contains at least one of its enpoints in the vertex cover. The vertex cover problem consists
in finding a vertex cover of minimum size.

As many optimization problems on graphs, this problem can be modelized as an ILP in the following
way.

min
∑
v∈V

xv

subject to
xu + xv ≥ 1 for all e = (u, v) ∈ E

xu ∈ {0, 1}

Note that the VERTEX COVER problem is an NP-hard problem. Thus optimizing over an ILP is
NP-hard.

3 Approximation Algorithms

3.1 General definitions

Often, there is no fast efficient algorithm to solve an optimization problem Π. We have a choice to
make between efficiency and running time. An approximation algorithm is an algorithm giving a solu-
tion that “approximates” the best possible solution of Π. All along this course we will only consider
approximation algorithm running in polynomial time.

An algorithm is an α-approximation algorithm if the solution output by the algorithm is, in the
worst case, of size α · OPT where OPT is the size of the optimal solution. α is the approximation factor
(or ratio) of the algorithm. If α is a constant, the algorithm is a constant approximation algorithm.

3.2 An example: 2-approximation for Vertex Cover

Here we give a very simple approximation algorithm to illustrate this notion.

Procedure 1 Approximation algorithm for Vertex Cover

X = ∅
H = G
while there is an edge in H do

Let e = (u, v) be an edge of H .
H := H \ {u, v} Delete u, v and the edges incident to them.
X := X ∪ {u, v}

end while
Return X

Lemma 1. Algorithm 1 returns a Vertex Cover.

Proof. Let us prove that for every edge, at least one of the endpoints is selected in X . Either the edge is
selected at some point of the algorithm and the conclusion immediately holds. Or the edge f = (a, b)
is not selected by the algorithm. Since f exists at the beginning of the algorithm in H (since H = G)
and does not exist at the end (since H is edge-less), there is a step i such that f is in Hi, the graph at the
beginning of step i and not in Hi+1, the graph at the end of step i. Let g = (x, y) be the edge selected at
step i. Since the only edges deleted between Hi and Hi+1 are edges incident to x or y, the edge f must
contain either x or y. Since both vertices are added in X , the conclusion holds.

Lemma 2. The set X returned by Algorithm 1 has size at most 2OPT .

5

x1

x2

Boxes constraints

Wood constraint

Machine production constraint

6

7

Figure 1: Geometrical representation of the Dovetail LP. In dotted, lines with the same value for the
objective function. The gray part is the feasible region.

Proof. Let e1, e2, · · · , e` be the set of edges selected during this procedure. Note that they are vertex
disjoint since the endpoints of the edges selected during the algorithm are deleted during the procedure.
So any vertex cover must select at least one endpoints of all of these edges. In particular, its size is at
least `, which completes the proof.

Note that the proof of Lemma 2 essentially ensures that the size of a vertex cover is at most twice
the size of a maximum matching... It will important within a few weeks !

4 Geometric representations

Before explaining how we can find a solution using a graphical argument, let us first explain how a
linear program can be represented on a geometrical space. Since there are two decision variables x1 and
x2, our feasible region is a subset of R2. We will represent the LP in a 2-dimensional space (the plane)
and we will try to determine the feasible region. All along this part, you are refered to Figure 1 for an
illustration.

Since both x1 and x2 are non-negative, it means that three quarter of the plane is not in the feasible
region: the feasible region is included in the “north-east” quarter of the plane: indeed if x1 < 0 or
x2 < 0, then the point x = (x1, x2) is not feasible. More precisely, when we consider the constraint
x1 ≤ 0, then a half plane is not feasible. Actually this fact is much more general: every linear constraint
(which is an inequality) eliminate one half of the space from the set of feasible solutions. Moreover the
constraints x1 ≤ 7 and x2 ≤ 6 ensure that the set of feasible solutions is in the axis-parallel rectangle
with corners (0, 0) and (7, 6).

The two other constraints are slightly more involved (but don’t worry, not a lot, the constraints are
still linear). We have 3 · x1 + x2 ≤ 18. The equality is reached when 3x1 + x2 = 18 ⇔ x2 = 18 − 3x1.
So the set of tight points for this constraint can be represented using a line passing through the point
(0, 18) with a slope of −3. The inequality is satisfied for every x2 which is above this line, which, again,
defines a half-plane. Similarly, the constraint x1 + x2 ≤ 9 can be represented using the line x2 = 9− x1
passing through (0, 9) with a slope of −1.

Finally the set of feasible solution is the intersection of all these half-spaces (see Figure 1). Note
that no point of the feasible region is tight for the constraint x1 ≤ 7. The constraint is called redundant
and any redundant constraint can be deleted from the set of constraints (at least at this point, we will
nevertheless see later that it can be useful to keep this constraint if we want to study the behavior of
our system when we modify the constraints).

More details on the geometrical representation of LP and reminders (and new stuff) concerning
linear algebra and polyhedron will follow in the upcoming lectures.

6

5 Solving a LP via geometric methods

5.1 Via “moving” a line.

Imagine now that you have a feasible region F and that you want to determine the point x ∈ F which
maximizes the first coordinate. Then you will just draw a vertical line and move this line horizontally
in order to find the point maximizing the first coordinate.

For more complicated maximization problems, the method is the same. Since we want to maximize
3 ·x1 + 2 ·x2, we want to find an element in the feasible region which is maximum in the direction (3, 2).
The points of the plane which have the same value in that direction form a line (in larger dimensions, it
will be a hyperplane of Rn) perpendicular to the vector (3, 2), i.e. a line of the form 3x− 2y = c where c
is a constant (several such lines are represented as dotted lines in Figure 1).

So we just have to “move” the line 3x − 2y = c (using variations of c to considering lines parallel
to the vectorial line 3x − 2y = 0) in order to find the best solution. By doing it on our example we can
show that the optimal solution is reached for the point(9

2
9
2

)
.

Then we just have to compute the objective function on this point in order to obtain the maximum value.
So the optimal value is 22.5 and then the maximum revenue for the company is $2, 250. This profit is
achieved if Dovetail produces 450, 000 boxes of long matches and 450, 000 boxes of short matches. Note
that the optimal point is a vertex (the formal definition of vertex will come soon but vertex essentially
means “corner” of the feasible region) of the feasible region which is a crucial fact in linear program-
ming.

5.2 Via corner-walking.

Although it was obvious from the figure what the optimal solution is for the Dovetail model, computers
cannot “mentally move” lines (and even you will have some trouble to do it if the number of decision
variables increases: it is quite complicated to mentally or physically represent spaces of dimension 4
or more). So in order to construct an optimal solution, we will have to do something else. We will see
later in this course that in fact, if a linear optimization problem has an optimal solution, then it has an
optimal solution at a vertex. So it suffices to consider only vertices of the feasible region and walk from
any corner to any other corner trying to improve the best solution. This suggests the following method
:

• Step 1: Start at some initial vertex v.

• Step 2: If we can walk along a constraint v to a neighbor v′, while increasing the objective value,
then set v := v′ , and repeat Step 2. If not, then we are done.

Again, if we use this corner-walking solution, we find the same optimal solution. The most famous
algorithm which solves LP, called the Simplex Algorithm is based on this method.

5.3 Shadows prices.

A constraint C is tight at a point x if x is in the hyperplane defined by the constraint C. Solving a linear
program gives much more information than the optimal value. Indeed, after the computation of the
best solution, we can also make a post-analysis in order to determine how our profit can increase. In
particular, we can evaluate the possible gain if we improve our equipment. This vast area is known as
sensitivity analysis. We will study in details this topic later in these lectures.

Acknowledgments: These lectures are inspired from the lectures notes of Bruce Shepherd and Yori
Zwols. The Dovetail example (and a few other example that will appear in the lectures) are taken from
the book “Applied Mathematical Programming” of Bradley, Hax, Magnanti.

7

