Optimization and Approximation ENS Lyon, 2017-2018

TDS8 - VC-dimension

Indication of hardness: from (*) to (****).

1 Hitting Set problems

Exercise 1 - d-intervals

An (d)-interval graph G is an intersection graph of (d) intervals in the line. In other
words, vertices are represented via (d) intervals in the line. And there is an edge be-
tween two vertices if at least one of their corresponding intervals intersect.

For instance, the vertices of 1-interval graphs are intervals [a, b] and there is an edge
between the vertices represented by [a, b] and [c, d] if and only if the intervals [a, b] and
[c, d] intersect.

A point z of the line intersect a vertex v of a d-interval graph if x is in one of the
d-intervals of v. We denote by 7 the minimum number of points of the line intersecting
all the vertices of a d-interval graph. We denote by v the maximum number of vertices
X of G whose intervals are pairwise disjoint (i.e. for every z,2’ € X, the union of the
intervals of = and the union of the intervals of 2’ are disjoint). In other words, v is the
maximum size of an independent set of G.

(a) Formulate the problem of finding 7 as a Hitting Set problem in a hypergraph.

(b) Prove that the dual of this problem is the MIS in G. In other words, the optimal of
the dual is v.

(c) Prove that 7 = v for 1-interval graphs algorithmically.

(d) Another proof. Prove that for unit interval graphs, the constraint matrix is TU.
Conclude that 7 = v.

(e) Propose a lower bound on the gap between 7 and v for d-interval graphs.
2 VC-dimension

Exercise 2 - VC-dimension of graph classes (**)

Prove that the neighborhood hypergraph of the following classes have VC-dimension

at most:

(a) 2 for interval graphs (see Exercise 1 for a definition).

(b) 2 for graphs of girth at least 5. The girth of a cycle is the size of a minimum cycle.

(c) 3 for Unit Disks graphs. A unit disk graph is a graph where vertices can be repre-
sented as unit disks in the plane. And there is an edge between two vertices if the
corresponding disks intersect.

(d) Prove that these bounds are tight.
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Exercise 3 - Dual hypergraph and dual VC-dimension (**)
A hypergraph H = (V, E) can be seen as a bipartite graph B with vertex set V' U E and
where there is an edge between v and ein Bif v € ein H.

(a) Interpret the VC-dimension in this bipartite graph.

(b) The dual VC-dimension is the VC-dimension of the bipartite graph where we per-
mute the roles of hyperedges and vertices. Prove that

DVC <2Ve+l _q

where DVC is the dual VC-dimension.

Exercise 4 - VC-dimension and bipartite graphs (***)

A graph G contains all the bipartite graphs of size k if, for every bipartite graph H

with both side of size, there exist two disjoint subsets A, B of size k such that the edges

between A and B correspond to the graph H. Note that we make no asumption on the

possible edges inside A and B. In this exercise we define the VC-dimension of a graph

G as the VC-dimension of the neighborhood hypergraph (vertices correspond to vertices

of G and we create a hyperedge for each vertex v where e, is the closed neighorhood of

vin G).

(a) Prove that if G contains all the bipartite graphs of size k, then its VC-dimension is
at least |log(k)].

(b) Prove that if G has VC-dimension at least k, then it contains all the bipartite graphs
of size (k — [log(k)] — 1) x (k — [log(k)] — 1).

Exercise 5 - Proof of Sauer’s Lemma (**) The goal of this exercise is to prove the
Sauer’s Lemma we have seen during the lectures: Let H = (V, E) be a simple hypergraph
of VC-dimension d. For every set X C V, the number of (distinct) traces of E on X is at most

d (|1X
o (7).
1. Prove that when d = 0 or n = 1 the conclusion holds.

2. Assume now that d > 1 and n > 1. Let v be a vertex and let E1, E be a partition
of E defined as follows:

E; ={esuchthatv € eand e\ v € E}

FEy = {esuchthat 3¢’ € £\ E1,e =€ \ v}

Let us define H; (resp. H») as the hypergraph on vertex set V' \ v and with edge
set Iy (resp. E»).

Prove that both hypergraphs are simple.
3. Prove that both hypergraphs have VC-dimension d — 1.
4. Conclude.
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Exercise 6 - Proof of Haussler-Welzl result (****) A measure of a hypergraph is a
weight (i.e.non negative) function on the vertex set such that the sum of the weights
equals one. Let H be a hypergraph and ;. be a measure on the vertex set of H. An e-net
is a subset of vertices X such that every hyperedge of weight at least € intersects X. Our
goal is to prove the following theorem of the lectures: Every hypergraph of VC-dimension
d (and weight function on it) has an e-net of size O(%).

We want to prove it for the uniform measure. Let X be a subset selected uniforly at
random of size s := C' - (d/¢) In(d/e).

1. Using Tchebychev inequality prove that P(je N X| > se/2) > 1/2.

2. Let us call Ej the event “there exists a hyperedge which is not intersected by X”.
Prove that if P(Ey) < 1, then the conclusion holds.

3. Let Y be another set of size |X| drawn independently uniformly at random. A
hyperedge e heavily intersects Y if |[e N Y| > se/2.
Call E; the event “there exists a hyperedge which is not intersected by X and
which heavily intersects Y.

4. Prove that P(E;) > 1/2P(Ep) and P(E;) < P(Ej) .

5. Prove that P(E;) < 1/2.
Hint: Let Z = X UY. Let e be a hyperedge heavily intersecting ¥ and which do
not intersect X. How many partitions of the set Z permits to reach this objective
if we assume that X and Y is a bipartition of Z?

6. Using Sauer’s Lemma, what can you say about the number of traces on Z? Con-
clude.

3 Application of VC-dimension

Exercise 7 - Graph coloring.

The goal of this exercice consists in showing the following result:

Every (triangle,cube)-free graph on n vertices and of minimum degree c - n can be colored using
at most (’)(M) colors.

A cube is the graph represented at the right. A graph is triangle-free if

it does not contain any clique of size at least 3. A graph is cube-free if

the restriction of the graph to 8 vertices is never the cube. A coloring of

G consists in coloring the vertices of G in such a way adjacent vertices

receive distinct colors.

In what follows, we say that G is in C if G is a (triangle,cube)-free graph of minimum
degree c-n. Recall that for v € V, N (v) is the set of neighbors of v and N[v] = N (v)U{v}.
A dominating set of G is a subset X of vertices such that N[X| = V(G), i.e. every vertex
is in X or in the neighborhood of a vertex of X.

(a) Formulate the minimum dominating set problem as an ILP.

3
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(b) We consider the closed-neighborhood hypergraph of G denoted by H. The vertex
set of Hg is the vertex set of G. A set S is a hyperedge of H if there exists v € V(G)
with § = N[v].

Prove that X C V is a Dominating Set of G if and only if X is a Hitting Set of H.

(c) Prove that if G € C has a dominating set of size at most £, then G can be colored
with 2k colors.

(d) Let G € C. Give an upper bound on the optimal value of the fractional relaxation of
the Hitting Set LP of Hg?

(e) Let G € C. Give an upper bound on the VC-dimension of H.
(f) Conclude.
(g) Are your bounds of questions (d) and (e) tight? Provide lower bounds.

Exercise 8 - Balls of planar graphs (****)

Let G be a connected graph. The distance between z and y is the length of a minimum
path between = and y. A dominating set at distance d is a subset of vertices X such that
every vertex is at distance at most d from a vertex of X. The diameter of a graph G is
the maximum of the minimum distance between the vertices of G.

(a) Define the minimum dominating set at distance d as a Hitting Set problem.
(b) Interpret the dual of this problem.

(c) Assume that G has diameter at most 2d, show that the (integral) optimal value of
the dual is at most one.

(d) A planar graph does not admit K5 as a topological minor. In particular it means
that there do not exist 5 vertices v, . . ., v5 and a collection of paths P;; fori < j <5
such that P;; and P; do not intersect if {4, j} disjoint from {k,[}.

Using this lemma, prove that the 2VC-dimension of the hypergraph of the balls of
radius d is bounded.

(e) Conclude that the dominating set is bounded.



