Optimization and Approximation ENS Lyon, M1: 2018-2019

Homework: Code the Simplex Algorithm
— Deadline: 23h59 30th November 2018 —

The goal of this homework is for you to code the simplex algorithm and experiment with it. The reference
programming language considered in this assignment are: C / C++ / Java / Python. For Python, hints are given
concerning the modules you can use to design an efficient implementation while reducing the amount of work. If you
want to use another language, please ask us beforehand and indicate explicitely in your report which external libraries
your program uses. Moreover, you should add comments on your source code.

1 Program Specifications

Your program should accept a linear program in canonical form: the objective is a maximization function; each
constraint is in the form of <; and all variables are non-negative. In other words, your input linear program will be
given as follows:

n
max E CiX;
i=1

Zajﬂ?i < by, VYie[l,m],
J=1
x, > 0, Vie][l,n].

The input file must be in the exact format described here:

n
m

cl c2 ... cn

bl b2 ... bm
all al2 ... aln
a2l a22 ... a2n
aml am?2 ... amn

This input file format must be strictly followed since this will allow us to easily test your program.
Your program should be able to handle input files that contain whole numbers and fractions (represented as rational
numbers: p/q). Input files may also contain negative numbers.

The requirements for the format of the output file are not as strict as in the case of the input file. However, we
require that your program provide two output modes. The first is the “concise” output mode. If this option is chosen
by a user/tester/grader of your program, the output file must contain the following information:

e Say that the problem is INFEASIBLE, or
e Say that the problem is FEASIBLE but the solution value is UNBOUNDED, or
e If the problem is FEASIBLE and BOUNDED:

— An optimal solution, i.e. the values of the variables {x1,...,z,};

— The objective value of the optimal solution.

The second output mode is the “verbose” output mode. If this option is chosen by the user of your program, the
output file must contain the following information:

e An optimal solution, i.e. the values of the variables {z1,...,z,};
e The objective value of the optimal solution;

e The number of pivots taken by your program;

Which pivot rule was used to obtain this output;

The tableau for each pivot;

Optimization and Approximation

ENS Lyon, M1: 2018-2019

e The entering and leaving variables at each pivot.

Even if the input program is infeasible or the solution is unbounded, the verbose mode output should give some

evidence for this conclusion: i.e. show tableaus, pivots, etc.

We do not require that you include the input linear program in the output (although you can give the user the
option to do this) since the input linear program may be large. Here are some examples of what input files your

program must be able to handle and what output your program could return.

1.1 Example 1

For the following linear program:

max 5x; + 4x2 + 3z3

subject to: 2z1 +3x2+xz3 < 5
41 +xo+ 223 < 11

3x1 +4x9 +223 < 8

z1,T2,23 > 0

The input file will be formatted as follows:

3
18

I e

3
3
5
5
2 1
412
342
A

concise output file may look as in Figure

OUTPUT
The input linear program is:

Maximize 5x.1 +4x 2 +3x.3

Such that 2x.1 +3x.2 +1x.3 <=5
4x 1 +1x. 2 +2x.3 <= 11

3x-1 +4x 2 +2x.3 <= 8
x-1, x_2, x_.3 are non-negative
An optimal solution is: x.1 =2, x2 =0, x3 =1
The objective value for this solution is: 13
The number of pivots is: 2
The pivot rule used: Random

Figure 1: Concise output mode for Example 1

A verbose output file may look as in Figure

1.2 Example 2

For the following linear program:

4
max b5xy + % — 3z3

subject to: 2z +3x2+x3 < b
dxq + x9 — 2—? < 11
3x1 +4x0 4+ 223 < 91
1ty < 2
—xo—x3 < —6/7
—x1—x2 < —34
T1,x2,23 > 0

Optimization and Approximation

ENS Lyon, M1: 2018-2019

OUTPUT

The

Maxi.

input linear program is:

mize bx_1 +4x_2 +3x_.3

Such that 2x_.1 +3x.2 +1x.3 <=

One
The
The
The

4x 1 +1x 2 +2x 3 <=
3x_.1 +4x 2 +2x 3 <=

x-1, x.2, x.3 are non-negative

initial tableau is:

4 3 0 0
3 1 1 0
1 2 0 1

2 0 0

entering variable is x_1
leaving variable is x4

entering variable is x.3
leaving variable is x_6

-3 0 -1 0
2 0 2 0
-5 0 -2 1
-1 1 -3 0

optimal solution is: x.1 =

2, x2 =0, x3

objective value for this solution is: 13

number of pivots is: 2
pivot rule used: Random

The input file will

11 91 2 -6/7 -34
31

41 -2/3

342

110

0-1-1

-1-10

3
6
5 4/9 -3
5
2

A concise output file for an infeasible linear program may look as in Figure

Figure 2: Verbose output mode for Example 1

be formatted as follows:

Optimization and Approximation ENS Lyon, M1: 2018-2019

OUTPUT
This linear program is INFEASIBLE.

Figure 3: Concise output mode for an infeasible LP

2 Design of Program

Here are some helpful guidelines given for this assignment in previous years. They describe functions, types and
variable names that may be useful in designing your program. Note that these specifications were written for a
Python program.

1. (Fractional Numbers Data Structure) The numerical type you will use for this homework is (reduced) fractional
numbers. Python programmers can directly use the fractions module. Students using another programming
language have to find an equivalent library by their own (and indicate it in their report) or implement their own
datatype of fractional numbers. In the latter case, be careful to the type of integers you will use to represent
the numerator and the denominator: a fixed precision (e.g. 32 or 64 bit integers) will rapidly lead to overflow
errors! Here are the main primitives your datatype (from a library or implemented by yourself) should have to
work correctly:

frac_convert(a, b) Converts a couple of integers a and b into a fraction

frac_opposite(f) Computes the opposite of £
frac_inverse(f) Computes the inverse of f

frac null() Returns the fractional null element
frac_isnull(f) Tests if a fractional is null
frac_isneg(f) Tests if a fractional is negative
frac_ispos(f) Tests if a fractional is positive

frac_compare(f1, £2) Returns 0if f1 = f2, (f2— f1)/|f2 — f1| otherwise
frac_product(f1, £2) Returns the product of £1 and £2

frac_sum(f1, £2) Returns the sum of f1 and £2
frac_simplify(f) Simplifies the fraction f
frac_print(f) Prints on the standard output the fraction f

2. (Linear Program Data Structure)

a) (Data Structure) Write a new class or datatype 1p representing a linear program and a function to print
it on the standard output (1p_print (prog)).
We propose (but you are free to choose differently) a structure of an array of fractions to represent the
objective function and the right-hand side of constraints, and a matrix of fractions to represent the left-
hand side of the constraints (in Python, the numpy or sympy module may be used for multidimensional
arrays), along with the size of the program, i.e. the number of variables and the number of constraints.

b) (Parsing) Write a function parsing the file given to the program. For example, write the function
lp_parse(filename) parsing the file filename and returning the corresponding problem.
You can use any library or write your own parser from basic functions (in Python, you may use parsyED.

3. (Tableau Data Structure) Write the class (or datatype) tableau representing a tableau, and the corresponding
functions or methods. You can choose to represent a tableau with a matrix of frac along with a list of basic
variables and one of non-basic variables. Here is a possible list of functions or methods:

tableau_convert (prog) Write the initial tableau of prog
tableau_do_pivot(tb,
entering variable, Apply the pivot transformation on tb
leaving variable)

tableau_print (tb) Prints on the standard output tb
tableau_get_basic(tb) Returns the array of basic variables
tableau_get_nonbasic(tb) Returns the array of non-basic variables

4. (One Phase Simplex) Write the following functions:

Thttps://github.com/jneen/parsy

Optimization and Approximation ENS Lyon, M1: 2018-2019

simplex_choose_entering(tb)
simplex_choose_leaving(tb, entering var)
simplex_one_phase (tb)

This last function should display at each step of the simplex the current tableau.

5. (Two Phase Simplexr) Write the complete Simplex algorithm, performing the complete algorithm and printing
at the end its result: simplex_solve(prog)

3 Assignment
Your assignment is to program three pivot rules:

la. Maximum Coefficient Rule: At each step the entering variable is chosen such that its coefficient in the objective
function is maximized.

1b. Bland’s Rule.

lc. Design your own pivot rule.

After implementing these pivot rules, you should thoroughly test your program on various linear programs.
For eventual submission and grading, you should run your problem on the following problems:

2a. Exercises from the second exercise sheet:

— Lumberjack problem (TD 1, Exercise 1),
— Custom molder problem (TD 1, Exercise 5),
— Fractional knapsack problem problem (TD 1, Exercise 11).

2b. Random linear programs containing n variables and m constraints for n and m as large as possible.

2c. Find some “interesting” linear programs from any source you like (e.g. class, the internet, your friends, yourself)
and run your algorithm on these linear programs. Try to find examples that show the limitations of your
implementation: i.e. an input linear program that requires many pivots; an input linear program that does very
well for one pivot rule but badly for Bland’s Rule; an input linear program that cycles on a simple pivot rule,
etc.

4 Submission

The following files have to be emailed to the TAs by the deadline. You should zip the files (filename:) and email to:
e johanna.seif@ens-lyon.fr and ni-luh-dewi.sintiari@ens-lyon.fr

Your submission should include a makefile and readme file (readme filename: lastname-README.txt). This file
should specify how to run the program on an input file from the command line. For example,

macron-exec -v -r input.dat

would be the command to run Mr. Macron’s program in verbose mode using a random pivot on the input file
input.dat.

The readme file should also contain the known limitations of your program that you have determined by thoroughly
testing it. For example,

macron-simplex runs on inputs containing at most 20 variables and 1000 constraints.
The coefficients in the input file must be whole numbers (it does not work with fraction coefficients).

Files to be submitted:
e Readme file: lastname-README. txt
e Your plain text source files: lastname-simplex.py (or *.c, etc.)

e An executable file: lastname-exec (for compiled languages)

Optimization and Approximation ENS Lyon, M1: 2018-2019

A solution for the Student diet problem problem: lastname-student.out

A solution for the Custom molder problem: lastname-molder.out

A solution for the Fractional knapsack problem problem: lastname-fractional.out

e Three examples of random linear programs. Include input files and your output files: lastname-randoml.dat,
lastname-randoml.out

e Other files containing your “interesting” examples: lastname-examplel.dat, lastname-examplel.out.

A discussion file: lastname-discusssion.txt. It should contain answers to the following questions:

— Explanation of your choice/design of the third pivot rule.
— What differing behavior (if any) did you find for the various pivot rules?

— What were the examples of linear programs that you chose [for 2c.] and why are they interesting? i.e.
What notable behaviour did they cause your program to exhibit?

— To which parameter of the program is your implementation the most sensitive? The number of variables
or the number of constraints?

5 Evaluation

Your program will be evaluated as follows. 50% of the points will come from your submitted files and the other 50%
will be test instances designed by the TAs. The submitted files will be graded roughly as follows:

Solutions for the Student diet problem, Custom molder, and Fractional knapsack problem problems.
(20 points)

Solutions on the three random instances. (10 points)
Discussion of the interesting examples that you found. (10 points)
Design of your pivot rule: correctness of implementation/ideas. (10 points)
The “surprise” tests run by the TAs will be roughly divided into the following three categories:
Easy instances: < 5 variables (20 points)
Medium instances: < 20 variables (20 points)
Hard instances: < 100 variables (10 points)

The test cases will contain a variety of instances so that you can receive partial credit even if your program does
not meet all of the requirements. For example, if your program only works on whole numbers (and not on fractions)
or if your program only works when the b; values are positive (i.e. you did not implement Phase I of the simplex),
then you should still get points for some of the test cases. For late submission, you will lose 1 point/hour.

6 Collaboration Policy

You may discuss anything related to this project (e.g. how does the simplex algorithm work, ideas for new pivot rules,
how to design an instance requiring a huge number of pivots) with your classmates. However, you must write your
own program; you are not allowed to copy code from your classmates or from the internet for the main body of your
simplex program.

If you wish to use supplemental functions (e.g. a random number generator for generating random instances, or
an algebraic subroutine for your pivot rule), you may use code that you did not write yourself, but you must cite it
appropriately (i.e. where did you find it and who wrote it).

	Program Specifications
	Example 1
	Example 2

	Design of Program
	Assignment
	Submission
	Evaluation
	Collaboration Policy

