
Intro to Concepts of Computer Science (Lab session 3) N.L.D. Sintiari / P. Koiran

Remarks After the lab session, send your code to my e-mail
ni-luh-dewi.sintiari@ens-lyon.fr. Please send it in one single �le named
TP4-nom_prenom, and in the email subject write "TP4 assignment".

Prüfer codes

A tree T = (V,E) on n ≥ 3 vertices can be represented by its Prüfer code. A Prüfer code is a
sequence (a0, a1, . . . , an−3) such that ai ∈ {0, 1, . . . , n − 1} for all i. Figures 2�6 present some trees
and the corresponding Prüfer codes.

Exercise 1.

(a) Given n, what is the number of the corresponding Prüfer codes? How does it relate to the
number of trees on n vertices?

(b) Figure 1 gives a pseudocode of a function that converts a Prüfer code into a tree. Implement
it as a function prufer_to_tree(P). How many operations do you need to �nd the element v
from lines 1 and 2? (Note that �nding an element in a list requires to iterate through it, and
hence takes linear time.) What is the overall complexity of your function? To achieve a better
performance, create a list C of length n such that C[k] is the number of occurrences of k in P .
Update this list at each passage of the loop in order to �nd the element v (line 1) in linear time.

(c) We now have a way to study random trees: we can take a random Prüfer code and construct the
corresponding tree. Do some experiments to estimate what is the average diameter of a random
tree. How fast does it grow with n? (Hint: it grows like nα for some 0 < α ≤ 1. We want to
know the value of α.)

(d) There is a di�erent way to study random trees: we take all n(n− 1)/2 possible edges of a graph
with n vertices, permute them randomly, and use the Kruskal algorithm to �nd a spanning tree
(the weights of edges are equal to 0). Estimate the average diameter of a tree obtained in this
way. Is this the same model as above?

(e) Write a function tree_to_prufer(E) that takes a tree as an input and outputs the corresponding
Prüfer code. (Hint: consider the leaf of the tree with the smallest number and look at its
neighbor.)

(f) The element v from line 1 of the algorithm can be found in O(log n) time (which is faster than
linear). This can be achieved using a data structure known as a binary heap, and implemented
in the heapq module of Python. Read about binary heaps and implement them in your function.



Data: A Prüfer code P (given as a list of numbers)

Result: A list of edges E of a tree

E ← [];
n← len(P ) + 2;
L← [0, 1, . . . , n− 1];
for i ∈ {0, 1, . . . , n− 3} do

v ← the smallest number that is in L but not in P [i : n− 2];1

L.remove(v);2

E.append
(
(v, P [i])

)
;

end

E.append
(
(L[0], L[1])

)
;

Figure 1: Computing a tree from its Prüfer code.

Figure 2: Tree with code (0, 0, 0, 0).
Figure 3: Tree with code (3, 1, 1).

Figure 4: Tree with code (3, 4, 3, 4). Figure 5: Tree with code (1, 4, 4, 0).

Figure 6: Tree with code (1, 7, 8, 2, 2, 8, 4, 1).


