Intro to Concepts of Computer Science (Lab session 1) N.L.D. Sintiari / P. Koiran

Remarks You can use whatever programming language you want to solve the exercises. However,
these notes are focused on Python, so you may need to adapt them to fit your language of choice. If
you do not know some notions or algorithms that we mention here, do not hesitate to search on the
Internet for information.

Euclid and Bézout

Exercise 1.

(a) Write a function gcd(m,n) that computes the GCD of two natural numbers using the exhaustive
search (i.e., by testing all the numbers).
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Test the function gcd(m,n) on different numbers to make sure that it outputs correct results.
Write a function gcd_euclid(m,n) that computes GCD using the Euclid algorithm.
Test the function gcd_euclid(m,n).
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Compare the execution time of the functions gcd(m,n), gcd_euclid(m,n), and math.gcd(m,n)
(a Python function computing GCD). To do so, for every number m between 1 and 1000 pick
a random number n that is between y/m and m — 1. Make a graph of the curves showing the
execution time for all three methods. What do you observe ? (Hint : you may use the function
random.randint to pick random numbers, time.time to measure time, matplotlib.pyplot to
make the graph, and math.sqrt to compute the square roots.)

(f) Alice wants to know what is the probability that two random integers are coprime (i.e., have
GCD equal to 1). In order to help her, pick random integers from the interval [1, 10®] and compute
their GCD. Do this 10° times and let p denote the proportion of coprime pairs. Compute the
number \/% How do you think—what is the answer to Alice’s question 7

(g) Python offers a library called numpy.polynomial that handles operations on polynomials. Read
about the basic operations that this library offers (addition, multiplication etc.). How would you
implement a function that computes the GCD of two polynomials ? Test it on some examples.

From now on, we will not ask you explicitly to test the functions that you write : you should
always do that. Test your function just after you wrote it (do not wait to have 10 functions before
you start testing) and do not hesitate to do many tests.

Exercise 2. We now want to write a procedure that takes as an input two natural numbers m,n
and finds two integer numbers p, ¢ such that pm+gn = ged(m, n). The existence of such pair is given
by the Bézout identity. It is important to note that one of the numbers p,¢ may be negative. For
instance, if (m,n) = (2,3), then we have (p,q) = (1,—1). As previously, we would like to start by
the exhaustive search that enumerates all possible numbers. This is more difficult than before, since
we need to enumerate pairs of signed numbers.

(a) There is a natural way of enumerating all integer numbers : 0,1, —1,2,—2,3,—3,... Write a
function all_integers(k) that takes a natural number k£ as an input and outputs the kth
element of the sequence given above (note that the index of the first element of the sequence is
0).

(b) Write a function natural_pairs (k) that enumerates all pairs of natural numbers. A reasonable
way of enumerating such pairs is given in Figure 1 and was studied by Cantor. He noted that
the coordinates (z,y) of the kth element of this sequence can be computed using the formulas
w=|(V8k+1-1)/2|,t = (w?*+w)/2,y =k —1t, x :=w—y. You can use these formulas to
implement your function. (If you want to know more on this topic, search for “pairing functions”
on the Internet.)



FIGURE 1 — The Cantor pairing function. Source : Wikipedia

Write a function integer_pairs(k) that enumerates all pairs of integer numbers. To do so, take
the output of natural_pairs(k) and use all_integers() on both coordinates.

Write a function exhaustive_bezout(m,n) that computes the numbers (p,q) from the Bézout
identity using exhaustive search.

Write a function bezout (m,n) that does the same thing but without using exhaustive search.
What is the complexity of your function ? (Hint : proceed similarly to the Euclid algorithm.)

Compare the execution time of the two methods.

Modular exponentiation and prime numbers

Exercise 3.

(a)

(b)
(c)

Write a function power(a,b) that takes two natural numbers a, b as an input and outputs a’

using a naive algorithm (a loop that does b multiplications).

Write a function fast_power(a,b) that computes a®

using exponentiation by squaring.

Write a function power_modulo(a,b,c) that takes numbers a,b,c as an input and computes
(a® mod c¢). Consider two options : compute a’® and then take the reminder modulo ¢ or use
modular arithmetic for all computations, not only at the end. Which of these methods is better ?

Compare your functions with the pow function available in Python.

Exercise 4.

(a)

Write a function is_prime(n) that checks if a given number is prime. What is the complexity
of your function ? Use of the Landau notations : O(-), ©(-), §(-), etc.

Improve the function is_prime(n) so that its complexity is proportional to y/n.

Write a function erasthotenes(n) that outputs a list of all primes smaller than n. To do so,
use the sieve of Erasthotenes.

The Fermat little theorem states that if p is a prime number, then

a? = a mod p (1)

for every natural number a. However, prime numbers are not the only ones that have this property.
The numbers that are not prime but satisfy it are called Carmichael numbers. Write a function
charmichael_test(p,N) that tests if a given number p is prime and, if not, checks if it satisfies
the equality (1) for all natural numbers 1 < a < N. Take N = 100 and try to find all Carmichael
numbers smaller than 2000. Test your candidates by putting N = 10000. What do your tests
indicate 7



