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TUTORIAL VII

1 Expurgation
Let C be a M -code with error probability Perr(C) = δ.

1. Show that you can build a bM/2c-code with maximal error probability ≤ 2δ.

2 Channel coding problems
1. Consider the channel W with input alphabet X = {a, b, c} and output alphabet {0, 1}, with W (0|a) = 1,W (0|b) =

1
2 ,W (1|b) = 1

2 and W (1|c) = 1. Then, let W×n be n independent copies of W .

(a) For any M , determine the optimal (i.e., smallest possible) error probability for an M -code for W×n, as a function
of M and n.
Note that this bound is achievable, by losslessly sending messages m ∈ {1, 2, . . . , 2n} (so that they are correctly
decodable with probability 1).

We encode all other message as bn (note that they are never decoded correctly, as they are not in the range of the
decoding function).

Thus, we can correctly decode 2n out of M messages, so the error probability is 1− 2n

M .

(b) Compute C(W ).

2. Let a ∈ {1, 2}. Consider the additive noise channel with input alphabet X = {0, 1} and output alphabet Y = {0, 1, 2, 3},
where the output Y is given by x + Z when x is the input symbol and Z is a random variable with distribution
P {Z = 0} = P {Z = a} = 1

2 . Compute the information capacity of this channel.

3 Algorithmic approach to the channel coding problem
The main objective here is to take an algorithmic approach for the channel coding problem. The input to our algorithmic problem
is the specification of a noisy channel W from an input set X to an output set Y . We would like to send M messages and we
ask what is the minimum error probability that we can achieve.

This will be a good opportunity to introduce submodular functions which is an interesting property to keep in mind and a
rich area of study in optimization and approximation algorithms.

1. (Maximization of submodular functions)
A function f : 2X → R+ (with X is finite) taking as input a subset S ⊆ X that has the following property.

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) . (4)

It is said to be monotone if f(S) ≤ f(T ) whenever S ⊆ T .

(a) Show that an equivalent definition for submodular function is that f(T ∪{j})− f(T ) ≤ f(S ∪{j})− f(S) for any
S ⊆ T and any j ∈ X − T . This can be interpreted as a “diminishing returns” property.

(b) (Remark: this question is independent of the following questions) Let Z1, . . . , Zn be a family of random variables.
For a subset S ⊆ {1, . . . , n}, let ZS be the collection of random variables {Zi}i∈S . Show that f(S) = H(ZS) is a
submodular and monotone function.

(c) Let f be a submodular, monotone and nonnegative function and consider the following optimization problem
maxS⊆X ,|S|=M f(S). Let S∗ of size M be such that f(S∗) = maxS⊆X ,|S|=M f(S). Computing such an S∗ is
computationally hard in general. But there is a natural greedy algorithm for this problem: start with S0 = ∅, then
choose Si+1 = Si ∪ argmax{f(Si ∪ {j}) : j ∈ X − Si}. Show that f(S∗) ≤ f(Si) +M(f(Si+1)− f(Si)).

(d) Prove that f(S∗)− f(Si+1) ≤ (1− 1
M )(f(S∗)− f(Si)).

(e) Conclude that the greedy algorithm gives a constant factor approximation for this problem (and say what the constant
is).



2. (Channel coding as a submodular optimization problem) Let S(W,M) be the largest average success probability of a code
for M messages:

S(W,M) = max
e,d

1

M

M∑
i=1

∑
y∈Y:d(y)=i

W (y|e(i)) , (15)

where the maximization is over functions e : {1, . . . ,M} → X and d : Y → {1, . . . ,M}.

(a) Show that S(W,M) can be written as maximizing some function f over all subsets of X of size M . Then show that
f is submodular and monotone.

(b) Conclude that it is possible to efficiently (here efficiently means polynomial in the description of the channel W and
of M ) find a code that achieves a success probability that is at least (1− 1/e) · S(W,M).
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