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HW 2 - CORRECTION

1 Homework 2

1. Let A,(n, d) be the largest & such that a code over alphabet {1, ..., ¢} of block length n, dimension
k and minimum distance d exists (recall that this corresponds to the notation (n, k, d),). Determine
Ay(3,d) for all integers d > 1.

A: We know that ¥ [n, k,d|, — code, we have:

k <n—log, {EJ C) (q—1)

i=1
e Sincen = 3, ford > 3, we have A3(3,d) = 0 (cannot have two words with 3 bits but having Hamming
distance d > 3).

e Ford =1, we have k < 3, and we can achieve the equality by taking C = {0, 1}3, SO0 we can encode
all words with Hamming distance 1, and A3(3,1) = 3.

e Ford =2, we have k < 3, but k # 3 because we cannot encode all 3-bits codewords with Hamming
distance 2. But we can achieve k = 2 by taking C = {000,011, 101,110}. So, A2(3,2).

e Ford =3, then k <1, and it is achievable by taking C' = {000, 111}, so A2(3,3) = 1.

2. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a
binary linear code [n, k, d], provided that

ke n—1 n—1
2 >1+( 1 )+ +(d_2). M)

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is
tight for the [7, 4, 3], Hamming code.

A: Consider Fgfk as the set of column vector of length (n — k) over Fo. Construct parity check matrix H as
follows.

1. Begin with H = h1, where hq is any nonzero vector in Fgfk .

2. Vi > 2, choose h; as the vector in Fgfk \ H such that h; cannot be written as a linear combination of
(d — 2) or fewer of the vectors in H (recall that H = {hy, ..., hi_1}).

3. Set H « H U {h;}.

4. Repeat step (2) until n column vectors are constructed (i.e. |H| = n).

Now, we show that the matrix H composed by the column vectors {hi, ..., hy} is the PCM of an [n, k,d]2-
linear code.

In the end of the procedure, we have matrix H of size (n — k) x n, and every subset of (d — 1) vectors of
{h1,...,hy} are linearly independent. Moreover, H is a full-rank matrix, i.e. dim(H) =n — k.



So we can construct an [n, k, d|o-linear code by taking the generator matrix G = kernel(H ) which is of size
k x n, and dim(G) = k, and defining C = x - G, with x is taken over Il:""éC

Since any subset of (d — 1) column vectors of H are linearly independent, then we know that the minimum
distance of C'is d. So, C'is an |n, k, d]o-linear code.

Now we show that H can be constructed if:

ek n—1 n—1
2 >1+< ) >+ +<d_2> (2)

Assume that by running the algorithm we have found vectors {h1, ..., h;} with 1 < j <n — 1. The number
of different linear combinations of (d — 2) of fewer of the set {ha, ..., h;} is:

2 J 2 n—1 n—1
< = c.
2 ()= ()= () e (G0)
1=0 1=0
So if the inequaliryholds, we know that there is a vector hj 1 € ngk which is not a linear combination of
(d — 2) or fewer vectors of {h1,...,h;} (i.e. hji1 is independent of {h;,, ..., h;, } ; kK < d—2).

Thus, by induction on j, we can conclude that we can obtain {h1, ..., hy}.

For the particular case of |7,4, 3|a-Hamming code, we have 27~% > 1 + (711) (so, we can use the algorithm
to get its PCM).

. A well-studied family of codes is called cyclic codes. Their defining property is that if
(o, Cno1) € C'then (¢cu_1,¢q,. .., Cn2) € C. Show that if § is a generator of IF; and o; = 5~
with n = ¢ — 1, then the [n, k], Reed-Solomon code is cyclic.

A: Since f3 is the generator of F*, {1,2,...,q—1} = {1,8',82,..., B972}. Moreover, 39! = B = 1, and
in general B' = B' + k(¢ —1); k € Z.

To prove that C = [n, k]q R-S is cyclic, we need to show that:

Y(co,c1y... 0n-1) € C, then (¢p—1,coy...,Cn—2) € C

Indeed: ¥(cy,c1,...,cn—1) € C, we can write it as:

(co,ciyevyCnet1) = (fm(aa), ..., fm(an))
= (fm(ﬁo)a .- -,fm(/ém_l))

where fn,(x) = Z?;é mjzl, Vo € {B°,..., 8"t} for some m = (mg,...,mg_1) € IF’;.
Then, showing (¢p—1,¢o, ..., cn—2) € C is equivalent to showing that:

(Cn1,€0, -+ s Cn2) = (far (B%), frrr (B)s - fr (B771))
for some m’ = (my,,...,m)_,) € IF’;.

Consider m' = (mg,...,mj_,) where Vj € {0,1,...,k — 1}, m}; = m; - B9, Clearly, m' € IF];. Then,
Vie{1,2,...,n}, we have:

k—1 k—1
fumr (B') = Zm}(ﬁi)j = ij B (B =m (BT = fn(BTY)
j=0 j=0

and fry (B°) = fr (B971) = frn (B") = fm(B"1).
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Therefore,

(Cnfla Cos - -+ CH*Q) = (fm(ﬁn_l)v fm(ﬁo)v s 7fm(ﬁn_2))
= (fm/(ﬁ0)7 fm’(:ﬁl)’ ) fm/(ﬁn_l))

So, (cn—1,¢0,...,cn—2) € C, hence C is cyclic.

4. The Hadamard code has a nice property that it can be locally decoded. Let Cqq, @ {0,1}" —
{0,1}?" be the encoding function of the Hadamard code. Suppose you are interested only in the i-th
bit z; of the message x € {0, 1}". The challenge is that you only have access to y € {0,1}2" such
that A(Caa, (%), y) < 25 and you would like to look only at a few bits of y. Show that by querying
only 2 well-chosen positions (the choice will involve some randomization) of y, you can determine
x; correctly with probability 4/5 (the probability here is over the choice of the queries, in particular
x,y and ¢ are fixed).

Hint: You might want to query y at the position labelled by u € {0, 1}" at random and the position
u + e; where e; € {0, 1}" is the binary representation of

A: We will query y,, and yy+¢;, where y,, and Y+, is the bit of y corresponds to the decimal value of u and v+ e;
respectively, with u is chosen randomly over {0,1}" and e; = (0...010...0) (with 1 at the i-th position).

Note that every k-th bit of Criqq,(x) corresponds to one of k € {0,1}" and the message x, i.e. we can write:
CHadr()k =20k

withe © k= (3 xi - ki) (mod 2).

Now notice that:

(zou)+ (o0 (ut+e)=@0u)+(z0u)+ (0O e)
(z ® e;)(mod 2)

So we can determine x; correctly if and only if we can determine both (x ® u) and (x ® (u + €;)) correctly.

Note that w is picked randomly (also uniformly) from the set {0, 1}". Then, since we have: A(Crqqr(x),y) < %,
we know that:

1
P(x ® wis wrong) = P(z © (u + e;) is wrong) < 0

Therefore:
P(x; is correct) = 1 — P(x ® w is wrong or x ® (u + €;) is wrong)

>1— (P(x ©®uiswrong) +P(x © (u+ e;) is wrong))
1 1

So, P(we can determine x; correctly) > %.
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