
ENS LYON – M1 – INFORMATION THEORY 2020–2021

Homework I: Universal compression
(due November 2nd, before tutorial, submit via portail des études only and call your file “Lastname.pdf”)

The objective of this homework is to study universal compressors, i.e., that do not use prior knowledge about the
source but still achieve close to optimal performance on some classes of sources. We fix some finite alphabet X of
symbols.

1 Types

We start with some basic observations related to types.

1. Let xn = x1 . . . xn ∈ X n. The type P̂xn of xn is defined as the empirical distribution defined by the sequence
xn. More precisely, P̂xn(a) = |{i∈[n]:xi=a}|

n . For X = {a, b, c}, what is the type of the string x5 = aaabc?
Give a different string that has the same type as x5.
We have that P̂x5 = (3/5, 1/5, 1/5). Another sequence with the same type is for instance aabca.

2. Let TX ,n be the set of all types for strings in X n. Show that |TX ,n| ≤ (n+ 1)|X |−1.
There are n + 1 choices at most for each entry P̂xn(a) (since |{i ∈ [n] : xi = a}| ∈ {0, 1, . . . , n}), the last
one is determined by the fact that sum is one.

3. For a given type P̂ ∈ TX ,n, the type class is defined by T (P̂ ) = {xn ∈ X n : P̂xn = P̂}. For X = {a, b} and
an arbitrary n, 0 ≤ k ≤ n and P̂ (a) = k

n and P̂ (b) = 1− k
n . What is the size |T (P̂ )| of the type class of P̂ ?

An element in T (P̂ ) is a defined by a subset of k indices i such that xi = a, so |T (P̂ )| =
(
n
k

)
.

For more general X , give an expression for the |T (P̂ )| using multinomial coefficients.
Similarly, an element of T (P̂ ) is a partition in subsets of size ka1 , ka2 , . . . , ka|X| of indices, where kai =

nP̂ (ai). The number of such partitions is given by the multinomial coefficient
(

n
ka1 ,ka2 ,...,ka|X|

)
.

4. Prove that for any P̂ ∈ TX ,n, we have |T (P̂ )| ≤ 2nH(P̂ ). Hint: Introduce Xn = X1 . . . Xn to be iid with
distribution P̂ , and for xn ∈ T (P̂ ), compute PXn(xn).
We have PXn(xn) = P̂ (a1)

nP̂ (a1) · · · P̂ (a|X |)nP̂ (a|X|) = 2−
∑

i P̂ (ai) log P̂ (ai) = 2−nH(P̂ ). Then 1 ≥∑
xn∈T (P̂ ) PXn(xn) = |T (P̂ )|2−nH(P̂ ) and thus |T (P̂ )| ≤ 2nH(P̂ ) .

2 Universal compression using types

Define the distribution Q on X n where Q(xn) = 1
cn|T (P̂xn )|

where cn is chosen so that Q is a distribution.

1. Show that cn ≤ (n+ 1)|X |−1.
We have 1 =

∑
xn Q(xn) =

∑
P̂∈Tn

∑
xn∈T (P̂ )

1
cn|T (P̂xn )|

=
∑

P̂∈Tn
1
cn

∑
xn∈T (P̂ )

1
|T (P̂ )|

=
∑

P̂∈Tn
1
cn

=

|Tn|
cn

. So cn ≤ |Tn| ≤ (n+ 1)|X |−1.

2. Use Kraft’s inequality to show that there is a prefix-free compressor Ctypes : X n → {0, 1}∗ that maps any
xn ∈ X n to a bitstring Ctypes(x

n) of length at most nH(P̂xn) + (|X | − 1) log2(n + 1) + 1. Note that this
compressor does not use any prior model about the source that it is compressing, Q is only a distribution that
we use in order to define the compressor and might be different from the actual distribution of the source.
Set `(xn) = dlog2(1/Q(xn))e. It satisfies Kraft’s inequality since:∑

xn∈Xn

2−dlog2(1/Q(xn))e ≤
∑
xn∈Xn

2− log2(1/Q(xn)) =
∑
xn∈Xn

Q(xn) = 1



Thus, it defines a prefix-free compressor Ctypes : X n → {0, 1}∗ with |Ctypes(x
n)| = `(xn). But

`(xn) = dlog2(1/Q(xn))e ≤ log2(1/Q(xn)) + 1 = log2 |T (P̂xn)|+ log2 cn + 1

≤ nH(P̂xn) + (|X | − 1) log2(n+ 1) + 1 .

3. Now in order to evaluate how this compression method consider a sequence of independent random variables
X1 . . . Xn each with distribution µ onX . As we saw in class, an optimal-prefix free for this source has expected
encoding length between nH(µ) and nH(µ) + 1 (note that H(X1 . . . Xn) = nH(µ)).

(a) Show that for any xn ∈ X n, |Ctypes(x
n)| − log2

1
µn(xn) ≤ (|X | − 1) log(n + 1) + 1, where µn(xn) :=

µ(x1)µ(x2) · · ·µ(xn).

|Ctypes(x
n)| − log

1

µn(xn)
≤ logµn(xn)|T (P̂xn)|+ (|X | − 1) log(n+ 1) + 1

But µn(xn)|T (P̂xn)| =
∑

yn∈T (P̂xn )
µn(yn) ≤ 1.

(b) Conclude that for any choice of µ, the expected encoding length E
X1,...,Xn iid µ

{|Ctypes(X1 . . . Xn)|} for

the universal compressorCtypes uses at mostO(log n) extra bits compared to the optimal prefix-free code
for this source.
Since E

[
log 1

µn(X1,...,Xn)

]
=
∑n

i=1 E [− logµ(Xi)] = nH(µ), we have:

E[|Ctypes(X1, . . . , Xn)|] ≤ E
[
log

1

µn(X1, . . . , Xn)

]
+(|X |−1) log(n+1)+1 = nH(µ)+(|X |−1) log(n+1)+1 .

4. One could then consider more general sources X1 . . . Xn which are not necessarily iid but define a Markov
chain, i.e., we have that

PX1...Xn(x1 . . . xn) = µ(x1|xn)µ(x2|x1)µ(x3|x2) · · ·µ(xn|xn−1) (1)

for some conditional distribution µ(.|.) (note that we used a nonstandard circular dependency to avoid the
notational complications due to borders). We now define P̂ 2

xn(a, b) =
|{i∈[n]:xi=a,xi+1=b}|

n (with xn+1 = x1)
and the type class T 2(P̂ 2) = {xn : P̂ 2

xn = P̂ 2}. Construct a universal compressor C2
types as in the previous

questions such that for any source of the form (1), C2
types uses at most O(log n) extra bits compared to the

optimal prefix-free code for this source.
For the sake of simplicity, let us assume that P is a probability distribution. As before, define Q(xn) =

1
dn|T 2(P̂ 2

xn )|
with dn parametrized such that Q is a probability distribution. Thus as before dn ≤ |T 2

n | ≤

(n + 1)|X |
2−1 with T 2

n defined as the set of all types T 2 for strings of length n. Note that P (xn) =∏
(a,b) µ(a|b)nP̂

2
xn (a,b) which depends only on the type P̂ 2 of xn, and so |T 2(P̂ 2

xn)|P (xn) =
∑

xn∈T 2(P̂ 2
xn )

P (xn) ≤
1. As such log |T 2(P̂ 2

xn)| − log 1/P (x1 . . . xn) = nH(P̂ 2
xn) − log 1/P (x1 . . . xn) ≤ 1 and we can have the

same argument as before choosing |C2
types(x

n)| = dlog2(1/Q(xn))e ≤ nH(P̂ 2
xn)+(|X |−1) log2(n+1)+1

which satisfies Kraft inequality.

A similar argument works for any finite order Markov chain where Xk is independent of X1 . . . Xk−r−1
conditioned on Xk−1 . . . Xk−r (you are not asked to prove this).
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3 Universal compression using arithmetic coding

Note that a priori, the compression method using types is not efficient in terms of n. In fact, we used Kraft’s inequality
to construct a code that has a number of codewords that is exponential in n. In this section, we describe a universal
compressor that uses arithmetic coding. Note that nothing prevents us from using arithmetic coding for the choice
of distribution Q defined in Section 2, but the issue is that it is not clear that Q satisfies the properties that make
arithmetic coding efficient, namely being able to compute conditional probabilities for the next symbol. Here, given
a word xn ∈ X n and t ∈ [n], define for any a ∈ X :

Rt(a) :=
|{i ∈ [t− 1] : xi = a}|+ 1

2

t− 1 + |X |
2

. (2)

1. Check that Rt is a probability distribution.∑
a∈X Rt(a) =

∑
a∈X |{i∈[t−1]:xi=a}|+

|X|
2

t−1+ |X|
2

=
t−1+ |X|

2

t−1+ |X|
2

= 1.

2. Using Rt for the conditional distributions used for arithmetic coding (in the lectures notes this was denoted
QAt|A1...At−1

), describe a universal compressor Carithm for sequences in X n (no need to get into the details of
how arithmetic coding works, you are only asked to give a sketch that allows you to discuss the running time
of the algorithm). Show that the running time and memory for encoding a sequence is linear in n, assuming X
is constant and the involved arithmetic operations take constant time.
Let us recall how Arithmetic Coding works. We encode first xn into an interval I(xn) = [un, vn) ⊆ [0, 1) and
then into Carithm(x

n).
First index the symbols X = {a1, . . . , a|X |} in an arbitrary way. Then define I(∅) = [0, 1).
Given I(xi−1) = [ui−1, vi−1), we compute I(xi) = [ui, vi) as follows: xi = ak for some k ∈ [|X [].
Then the interval is defined in terms of αi,k =

∑k−1
p=1 Ri(ap) and βi,k =

∑k
p=1Ri(ap) by

ui = ui−1 + (vi−1 − ui−1)αi,k and vi = ui−1 + (vi−1 − ui−1)βi,k.

We precompute first all the values ofRt(ak) in time and spaceO(n) (withRt(ak) =

(
t−2+ |X|

2

)
Rt−1(ak)+1xt−1=a

t−1+ |X|
2

),

and then the 2|X | × n partial sums αi,k and βi,k in time and space O(n). Then, Carithm(x
n) =

d2`une
2`

with

` ∈ N the smallest integer satisfying d2
`une+1

2`
≤ vn can be computed in constant time using logarithm. We

have also that |Carithm(xn)| ≤ d− log2(R1(x1)R2(x2) · · ·Rn(xn))e+ 1.

3. For this question, to simplify the calculations, we will assume that |X | = 2. Consider an iid source X1 . . . Xn,
where each Xi has distribution µ. Our objective is to show that |Carithm(x

n)| − log2
1

µn(xn) ≤
1
2 log n+O(1),

where as before µn(xn) =
∏n
i=1 µ(xi).

(a) Show that R1(x1)R2(x2) · · ·Rn(xn) =
((n0− 1

2
)(n0− 3

2
)··· 1

2)((n1− 1
2
)(n1− 3

2
)··· 1

2)
n! , where nb = |{i ∈ [n] :

xi = b}|.

n∏
i=1

Ri(xi) =
n∏
i=1

|{j ∈ [i− 1] : xj = xi}|+ 1
2

i

=
1

n!

(∏
i∈Z

(
|{j ∈ [i− 1] : xj = 0}|+ 1

2

)∏
i∈O

(
|{j ∈ [i− 1] : xj = 1}|+ 1

2

))
,

where Z = {i ∈ [n] : xi = 0} is of size n0 and O = {i ∈ [n] : xi = 1} is of size n1. If i is the k-th
element of A, we have that |{j ∈ [i − 1] : xj = 0}| = k − 1, since by definition of A and i there are
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k − 1 elements xj = 0 before i. The same arises for O and ones. Thus we get:

n∏
i=1

Ri(xi) =
1

n!

(
n0∏
k=1

(
k − 1 +

1

2

) n1∏
k=1

(
k − 1 +

1

2

))

=

(
(n0 − 1

2)(n0 −
3
2) · · ·

1
2

) (
(n1 − 1

2)(n1 −
3
2) · · ·

1
2

)
n!

.

(b) Show that for xn ∈ X n and any distribution µ, we have µn(xn) ≤ n
n0
0 n

n1
1

nn .
We have µn(xn) = µ(0)n0µ(1)n1 = 2n0 log µ(0)+n1 log µ(1) = 2n(n0/n logµ(0)+n1/n log µ(1)).
We can write (n0/n logµ(0)+n1/n logµ(1)) = (n0/n log n0/n+n1/n log n1/n)− (n0/n log n0/n+
n1/n log n1/n) + (n0/n logµ(0) + n1/n logµ(1)).
With this, µn(xn) = 2−nH(n0/n)2−nD(n0/n‖µ) and by nonnegativity of D(‖) it is maximal when

µ = n0/n, where µn(xn) = n
n0
0 n

n1
1

nn .

(c) Conclude. You may use Stirling’s approximation
√
2πnn+

1
2 e−n ≤ n! ≤ enn+

1
2 e−n for all positive

integers. Remark: You will get partial credit if you analyze the simpler choiceR′t(a) =
|{i∈[t−1]:xi=a}|+1

t+1 ,
which gives a slightly worse bound of log n instead of 1

2 log n.

|Carithm(x
n)| − log2

1

µn(xn)
≤ log2

µn(xn)

R1(x1)R2(x2) · · ·Rn(xn)
+O(1)

≤ log2
nn0
0 n

n1
1 n!

nn
(
(n0 − 1

2)(n0 −
3
2) · · ·

1
2

) (
(n1 − 1

2)(n1 −
3
2) · · ·

1
2

) +O(1)

= log2
n!

nn
+ log2

nn0
0 n

n1
1

(2n0)!
22n0n0!

(2n1)!
22n1n1!

+O(1)

≤ log2(e
−n+1√n) + log2(Ce

n0en1) +O(1) for some constant C using Stirling.

= log2(eC
√
n) +O(1) =

1

2
log n+O(1)
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