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TD 7+: A quick remainder on Number Theory

1 Primes and divisibility

Let Z be the set of integers. For a,b € Z, we say that a divides b, written a|b if there exists k € Z such that
b=ka. Ifa ¢ {1,b}, ais called a factor of b. An integer p is prime if it has no factors (i.e. if it has only two
divisors 1 and itself).

Theorem 1. Every integer greater than 1 can be expressed uniquely as a product of primes. Let N > 0,

N = pr-" with p; prime and e; > 1.
i

Proposition 1. Let a be an integer and b be a positive integer, there exist unique integers q,r such that
a=qgb+rwith0<r<b

The greatest common divisor of two non-negative integers a, b, written ged(a, b), is the largest integer ¢ such
that c|a and c|b.

Proposition 2. Let a,b be positive integers. Then there exists integers X,Y such that Xa + Yb = ged(a,b).
Futhermore, ged(a, b) is the smallest positive integer that can be expressed in this way.

Given a and b, the Euclidean algorithm can be used to compute gecd(a,b) in polynomial time. The extended
Euclidean algorithm can be used to compute X and Y in polynomial time as well.

Proposition 3. Let a,b,c,p,q, N be integers.
e Ifclaband ged(a,c) = 1 then c|b.
e If pIN, q|N and gcd(p,q) = 1 then pq|N.

2 Modular Arithmetic

Leta,b,N € Z with N > 1. The notation (a4 mod N) denotes the remainder of 2 upon division by N. We
say that a and b are congruent modulo N if 2 mod N = b mod N. Note that congruence modulo N is an
equivalence relation. It also obeys the standard rules of arithmetic with respect to addition, substraction
and multiplication. But in general it does not respect division.

If there exists b~! such that bb~! = 1 mod N, we say that b~! is a multiplicative inverse of b modulo N.
When b is invertible modulo N, we define division by b modulo N as multiplication by b~! modulo N.
We stress that division by b is only defined when b is invertible modulo N.

Proposition 4. Let a, N be integers with N > 1. Then a is invertible modulo N if and only if ged(a, N) = 1.

2.1 Groups

We will always deal with finite, abelian groups. We call order of a group the number of elements in the

group.
Let G be a multiplicative group, ¢ € G and b > 0 be an integer. Then the exponentiation g’ can be
computed using a polynomial number of underlying group operations in G.

Theorem 2. Let G be a finite group of order m. Then for any element g € G, g™ = 1.
Corollary 1. Let G be a finite group of order m > 1. Then for ¢ € G and any integer i, we have g = g ™od ™,



3 The group Z},
For any N > 1, the set Zy = {0,..., N — 1} is a group under addition modulo N. We now define Z}; as:
z*={ae{l,...,N—1}|ged(a,N) =1}

i.e. all the integers relatively prime to N in Zy. Then under multiplication modulo N, all the elements of
this set are invertible.

Theorem 3. Let N > 1 be an integer. Then Z* is an abelian group under multiplication modulo N.

Euler function

The Euler function ¢ is defined as ¢(N) = |Z*|, it is the order of the group Z*. When N = p prime, then
all elements of {1,...,p — 1} are relatively prime to p, and then ¢(p) = p — 1. When N = pg with p and g
are distinct primes, then if an integer a € {1,..., N — 1} is not relatively prime to N, then either p|a or g|a.
The elements in this set divisible by p are exactly the (g — 1) elements p,2p, ..., (g —1)p, and the elements
divisible by g are exactly the (p — 1) elements 4,24, ..., (p — 1)3. The number of elements remaining is
therefore

N-1-(@q-1)—=(p-D)=pi—q-p+1=(p-1(-1).
Then if N = pq with p and g are distinct primes, $(N) = (p —1)(g — 1).
Theorem 4. Let N = [1; p}’, where the p; are distinct primes and e; > 1. Then ¢(N) = [T; pfi_l (pi—1).

Theorem 5 (Fermat). Take arbitrary N > 1 and a € 7>, then
a?™) =1 mod N.

For the specific case that N = p is prime, we have a?~! = 1 mod p.

4 Chinese Remainder Theorem

We use the notation =~ to say that two groups are isomorphic.

Theorem 6. Let N = pq where p and q are relatively prime. Then
ZN = Zp X Lg and Ly ~ L, X ZLg.

Moreover, let f be the function mapping elements x € {0,...,N — 1} to pairs (xp,x4) with x, € {0,...,p —1}
and x4 € {0,...,q — 1} defined by
f(x) = (x mod p, x mod q).

Then f is an isomorphism from Zy to Zy X Zgq, as well as an isomorphism from Zy; to Zy, X Z.

This theorem does not require p or g to be prime. En extension of this Theorem says that if py, ..., py are
pairwise relatively prime and N = []; p;, then

~ DY *N * DY *
LN =~ Lpy X -+ X Lp, and Ly = Ly X -+ X L, .

An isomorphism in each case is obtained by a natural extension of the one used in the theorem.

For the specific case of N = pq product of distinct primes. The Chinese Remainder Theorem shows that
addition or multiplication modulo N can be transformed to analogous operations modulo p and 4. This
conversion can be carried out in polynomial time if the factorisation of N is known.



5 Cyclic groups

Let G be a finite group and g € G, then the order of g is the smallest i such that ¢’ = 1.
Proposition 5. If g is an element of order i, then g* = ¢* ™41, Furthermore, ¢* = gV if, and only if, x = y mod i.

The identity of any group G has order 1. At the other extreme, if there exists an element g € G of order
m (the order of G), then the set (g) = {¢° g¢',...} generated by g is equal to G. In this case, we call G a
cyclic group and we say that g is a generator of G.

Theorem 7. Lagrange Let G be a finite group of order m and g € G an element of order i. Then i|m.

Corollary 2. If G is a group of prime order p, then G is cyclic. Furthermore, all elements of G except the identity
are generators of G.

Groups of prime order form one class of cyclic groups. The additive group Z for N > 1 is another example.
Another important example (which does not have prime order for p > 3) is the following.

Theorem 8. If p is prime, then Z,, is cyclic.

6 Primes, factoring

Given a composite integer N, the factoring problem is to find positive integers p,q such that N = pg.
Factoring is a classic example of hard problem, no polynomial-time algorithm that solves the factoring
problem has been yet developed.

Primes

The distribution of primes is given by the prime number theorem which gives a precise bounds on the
fraction of integers of a given length that are prime. This theorem implies that the probability that a
random n-bit integer is prime is at least ¢ /# for a constant c.

The most commonly-used algorithm to test primality is the Miller-Rabin algorithm. This algorithm takes
at input an integer N and an integer ¢ that determine the error probability. It runs in time polynomial in
IN| and t and if N is prime, it always outputs "prime", otherwise it outputs "prime" with probability at
most 27,

Putting all of this together there exists a polynomial-time prime-generation algorithm that, on input #,
outputs a random n-bits prime except with probability negligible in 7.

7 Exercises

Exercise 1. [Factorization]

1. Let N = pq be a product of p and g two distinct primes. Show that if ¢(N) and N are known, then
it is possible to compute p and g in polynomial time.

Exercise 2. [Generator]

Let p > 3 be a prime. The group G = (Z/pZ)* is cyclic. The purpose of the exercise is to find a generator
of that group, i.e., an element g such that (Z/pZ)* = {¢* : k € Z}.

1. For ¢ € G, we call the order of g the smallest k > 0 such that g* = 1, denoted by O(g). Show that
for any g € G, we have O(g)|p — 1.



2. Give an element of G that is not a generator of G. How many elements of G are generators?

3. Assume that p — 1 = 2g for some g that is prime. Give an efficient algorithm that finds a generator
of G. How do we find such a prime p?

Exercise 3. [Modulo]
Let p, N be integers with p|N.

1. Prove that for any integer X,
(X mod N) mod p = X mod p.

2. Show that, in contrast, (X mod p) mod N may not be equal to X mod N.

Exercise 4. [Algebraic structure]

Let N = pg with p and ¢ distinct odd primes of identical bit-size. We want to study the algebraic structure
of (Z/N?Z)*. Show the following propositions:

1. gcd(N,¢(N)) = 1.
2. Foranya € N, (1+ N)* = (1+aN) mod N2.

3. As a consequence, (1+ N) has order N mod N2.

Exercise 5. [Phi function]

1. Let p be a prime, show that ¢(p) = p — 1.
2. Let p and g be distinct primes and N = pg, show that ¢(N) = (p —1)(g — 1).

3. Let p be a prime and e > 1 an integer. Show that
p(r") =p"(p— 1)

4. Let p, g be relatively prime. Show that ¢(pq) = ¢(p)¢(q).

5. Prove Theorem 4.
Exercise 6. [RSA]
1. Let N = pq for p and g distinct primes, and e, d integers such that ed = 1 mod ¢(N). Show that for

all x € Zy, we have (x°)4 = x mod N.

Hint: Use the Chinese remainder theorem.

Exercise 7. [Quadratic residues]

— read again Exercise 5 from TD 2
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