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TD 7+: A quick remainder on Number Theory

1 Primes and divisibility

Let Z be the set of integers. For a, b ∈ Z, we say that a divides b, written a|b if there exists k ∈ Z such that
b = ka. If a /∈ {1, b}, a is called a factor of b. An integer p is prime if it has no factors (i.e. if it has only two
divisors 1 and itself).

Theorem 1. Every integer greater than 1 can be expressed uniquely as a product of primes. Let N > 0,

N = ∏
i

pei
i with pi prime and ei ≥ 1.

Proposition 1. Let a be an integer and b be a positive integer, there exist unique integers q, r such that

a = qb + r with 0 ≤ r < b

The greatest common divisor of two non-negative integers a, b, written gcd(a, b), is the largest integer c such
that c|a and c|b.

Proposition 2. Let a, b be positive integers. Then there exists integers X, Y such that Xa + Yb = gcd(a, b).
Futhermore, gcd(a, b) is the smallest positive integer that can be expressed in this way.

Given a and b, the Euclidean algorithm can be used to compute gcd(a, b) in polynomial time. The extended
Euclidean algorithm can be used to compute X and Y in polynomial time as well.

Proposition 3. Let a, b, c, p, q, N be integers.

• If c|ab and gcd(a, c) = 1 then c|b.

• If p|N, q|N and gcd(p, q) = 1 then pq|N.

2 Modular Arithmetic

Let a, b, N ∈ Z with N > 1. The notation (a mod N) denotes the remainder of a upon division by N. We
say that a and b are congruent modulo N if a mod N = b mod N. Note that congruence modulo N is an
equivalence relation. It also obeys the standard rules of arithmetic with respect to addition, substraction
and multiplication. But in general it does not respect division.
If there exists b−1 such that bb−1 = 1 mod N, we say that b−1 is a multiplicative inverse of b modulo N.
When b is invertible modulo N, we define division by b modulo N as multiplication by b−1 modulo N.
We stress that division by b is only defined when b is invertible modulo N.

Proposition 4. Let a, N be integers with N > 1. Then a is invertible modulo N if and only if gcd(a, N) = 1.

2.1 Groups

We will always deal with finite, abelian groups. We call order of a group the number of elements in the
group.
Let G be a multiplicative group, g ∈ G and b > 0 be an integer. Then the exponentiation gb can be
computed using a polynomial number of underlying group operations in G.

Theorem 2. Let G be a finite group of order m. Then for any element g ∈ G, gm = 1.

Corollary 1. Let G be a finite group of order m > 1. Then for g ∈ G and any integer i, we have gi = gi mod m.
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3 The group Z∗N
For any N > 1, the set ZN = {0, . . . , N − 1} is a group under addition modulo N. We now define Z∗N as:

Z? = {a ∈ {1, . . . , N − 1}| gcd(a, N) = 1}

i.e. all the integers relatively prime to N in ZN . Then under multiplication modulo N, all the elements of
this set are invertible.

Theorem 3. Let N > 1 be an integer. Then Z? is an abelian group under multiplication modulo N.

Euler function

The Euler function ϕ is defined as ϕ(N) = |Z?|, it is the order of the group Z?. When N = p prime, then
all elements of {1, . . . , p− 1} are relatively prime to p, and then φ(p) = p− 1. When N = pq with p and q
are distinct primes, then if an integer a ∈ {1, . . . , N− 1} is not relatively prime to N, then either p|a or q|a.
The elements in this set divisible by p are exactly the (q− 1) elements p, 2p, . . . , (q− 1)p, and the elements
divisible by q are exactly the (p− 1) elements q, 2q, . . . , (p− 1)q. The number of elements remaining is
therefore

N − 1− (q− 1)− (p− 1) = pq− q− p + 1 = (p− 1)(q− 1).

Then if N = pq with p and q are distinct primes, φ(N) = (p− 1)(q− 1).

Theorem 4. Let N = ∏i pei
i , where the pi are distinct primes and ei ≥ 1. Then φ(N) = ∏i pei−1

i (pi − 1).

Theorem 5 (Fermat). Take arbitrary N > 1 and a ∈ Z?, then

aφ(N) = 1 mod N.

For the specific case that N = p is prime, we have ap−1 = 1 mod p.

4 Chinese Remainder Theorem

We use the notation ' to say that two groups are isomorphic.

Theorem 6. Let N = pq where p and q are relatively prime. Then

ZN ' Zp ×Zq and Z∗N ' Z∗p ×Z∗q .

Moreover, let f be the function mapping elements x ∈ {0, . . . , N − 1} to pairs (xp, xq) with xp ∈ {0, . . . , p− 1}
and xq ∈ {0, . . . , q− 1} defined by

f (x) = (x mod p, x mod q).

Then f is an isomorphism from ZN to Zp ×Zq, as well as an isomorphism from Z∗N to Z∗p ×Z∗q .

This theorem does not require p or q to be prime. En extension of this Theorem says that if p1, . . . , p` are
pairwise relatively prime and N = ∏i pi, then

ZN ' Zp1 × · · · ×Zp` and Z∗N ' Z∗p1
× · · · ×Z∗p` .

An isomorphism in each case is obtained by a natural extension of the one used in the theorem.
For the specific case of N = pq product of distinct primes. The Chinese Remainder Theorem shows that
addition or multiplication modulo N can be transformed to analogous operations modulo p and q. This
conversion can be carried out in polynomial time if the factorisation of N is known.
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5 Cyclic groups

Let G be a finite group and g ∈ G, then the order of g is the smallest i such that gi = 1.

Proposition 5. If g is an element of order i, then gx = gx mod i. Furthermore, gx = gy if, and only if, x = y mod i.

The identity of any group G has order 1. At the other extreme, if there exists an element g ∈ G of order
m (the order of G), then the set 〈g〉 = {g0, g1, . . .} generated by g is equal to G. In this case, we call G a
cyclic group and we say that g is a generator of G.

Theorem 7. Lagrange Let G be a finite group of order m and g ∈ G an element of order i. Then i|m.

Corollary 2. If G is a group of prime order p, then G is cyclic. Furthermore, all elements of G except the identity
are generators of G.

Groups of prime order form one class of cyclic groups. The additive group Z for N > 1 is another example.
Another important example (which does not have prime order for p > 3) is the following.

Theorem 8. If p is prime, then Z∗p is cyclic.

6 Primes, factoring

Given a composite integer N, the factoring problem is to find positive integers p, q such that N = pq.
Factoring is a classic example of hard problem, no polynomial-time algorithm that solves the factoring
problem has been yet developed.

Primes

The distribution of primes is given by the prime number theorem which gives a precise bounds on the
fraction of integers of a given length that are prime. This theorem implies that the probability that a
random n-bit integer is prime is at least c/n for a constant c.
The most commonly-used algorithm to test primality is the Miller-Rabin algorithm. This algorithm takes
at input an integer N and an integer t that determine the error probability. It runs in time polynomial in
|N| and t and if N is prime, it always outputs "prime", otherwise it outputs "prime" with probability at
most 2−t.
Putting all of this together there exists a polynomial-time prime-generation algorithm that, on input n,
outputs a random n-bits prime except with probability negligible in n.

7 Exercises

Exercise 1. [Factorization]

1. Let N = pq be a product of p and q two distinct primes. Show that if ϕ(N) and N are known, then
it is possible to compute p and q in polynomial time.

Exercise 2. [Generator]

Let p ≥ 3 be a prime. The group G = (Z/pZ)∗ is cyclic. The purpose of the exercise is to find a generator
of that group, i.e., an element g such that (Z/pZ)∗ = {gk : k ∈ Z}.

1. For g ∈ G, we call the order of g the smallest k > 0 such that gk = 1, denoted by O(g). Show that
for any g ∈ G, we have O(g)|p− 1.
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2. Give an element of G that is not a generator of G. How many elements of G are generators?

3. Assume that p− 1 = 2q for some q that is prime. Give an efficient algorithm that finds a generator
of G. How do we find such a prime p?

Exercise 3. [Modulo]

Let p, N be integers with p|N.

1. Prove that for any integer X,
(X mod N) mod p = X mod p.

2. Show that, in contrast, (X mod p) mod N may not be equal to X mod N.

Exercise 4. [Algebraic structure]

Let N = pq with p and q distinct odd primes of identical bit-size. We want to study the algebraic structure
of (Z/N2Z)?. Show the following propositions:

1. gcd(N, ϕ(N)) = 1.

2. For any a ∈ N, (1 + N)a = (1 + aN) mod N2.

3. As a consequence, (1 + N) has order N mod N2.

Exercise 5. [Phi function]

1. Let p be a prime, show that ϕ(p) = p− 1.

2. Let p and q be distinct primes and N = pq, show that ϕ(N) = (p− 1)(q− 1).

3. Let p be a prime and e ≥ 1 an integer. Show that

ϕ(pe) = pe−1(p− 1).

4. Let p, q be relatively prime. Show that ϕ(pq) = ϕ(p)ϕ(q).

5. Prove Theorem 4.

Exercise 6. [RSA]

1. Let N = pq for p and q distinct primes, and e, d integers such that ed = 1 mod ϕ(N). Show that for
all x ∈ ZN , we have (xe)d = x mod N.

Hint: Use the Chinese remainder theorem.

Exercise 7. [Quadratic residues]

→ read again Exercise 5 from TD 2
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