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TD 4: CPA security and MACs

Exercise 1. [Security of CBC mode]

Suppose € = (E, D) is a block cipher defined over (K, X') where X = {0,1}". Let N := |X| = 2". For
any poly-bounded ! > 1, we define a cipher &’ = (E/,D’), with a key space K, message space X</, and
ciphertext space X' </*1\ X'0; that is the ciphertext space consists of all nonempty sequences of at most [ 4 1
data blocks. Encryption and decryption are defined as follows.

Encryption
for k € K and m € X=!, with v := |m|, we define
E'(k,m) :=
compute ¢ € X" as follows:
0] & (X)

forj<0tov—1
clj+1] « E(k,c[j]) & mlj]
output ¢;

Decryption

for k € K and ¢ € X<H1\ X0, with v := |c| — 1, we define
D'(k,c) :=
compute m € X7 as follows:
forj<0Otov—1do
mlj] < D(k,c[j+1] @ c[j])
output m;

1. Prove the correctness of the cipher.
2. Prove that if £ = (E, D) is a secure block cipher defined over (K, X'), and N := |X| is super-poly,
then for any poly-bounded I > 1, the cipher &’ described above is CPA-secure.

In particular, for every CPA adversary A that attacks £’ and makes at most Q queries to its challenger,
there exists a BC (Block Cipher) adversary B that attacks £, such that:

cra, o 2Q°12 BC
Adv; (&) < N +2-Advg (€)

Exercise 2. [The malleability of CBC mode]

Let ¢ be the CBC encryption of some message m € X', where X := {0,1}". You do not know . Let
A € X. Show how to modify the ciphertext ¢ to obtain a new ciphertext ¢’ that decrypts to m’, where
m'[0] = m[0] ® A, and m'[i] = m[i] fori=1,---,] — 1. That is, by modifying ¢ appropriately, you can flip
bits of your choice in the first block of the decryption of ¢ without affecting any of the other blocks.



Definition 1. A MAC system Z = (S, V) is a pair of efficient algorithms, S and V, where

e S is a probabilistic (signing) algorithm, that given a key k, a message m, it produces a tag t where t & S(k,m).
o V is a deterministic (verification) algorithm that given a key k, a tag t, it outputs accept or reject.

o [t requires correctness property: for all keys k and all messages m;

Pr{V(k,m,S(k,m)) = accept} =1

Definition 2. (MAC security) For a given MAC system I = (S, V), defined over K, M, T, and a given adversary
A, the attack game runs as follows:

o The challenger picks a random k &k

e A queries the challenger several times. For i = 1,2, - -, the i signing query is a message m; € M. Given

m;, the challenger computes a tag t; & S(k, m;), and then gives t; to A.

o A outputs a candidate forgery pair (m,t) € M x T that is not among the signed pairs, i.e.,
(m, t) & {(my, tr), (ma, t2), - - }
We say that A wins the above game if (m, t) is a valid pair under k. Moreover, we define:
AdvtMAS(T) = Pr{A wins}

Finally, T is a secure MAC, if for all efficient adversaries A, the advantage of A is negligible.

Exercise 3. [MAC and PRF]

Recall that a pseudo-random function (PRF) defined over (K, X, )) is an algorithm F that takes two inputs,
a key k € K and an input data block x € X, and outputs a value y := F(k, x). For a PRF F, we define we
define the deterministic MAC system Z = (S, V') derived from F as:

e S(k,m):= F(k,m)
o V(k,m,t):= accept if F(k,m) = t, and reject otherwise

We note that a secure PRF implies a secure deterministic MAC (proof ignored).

1. Give a construction of a secure deterministic MAC which is not a pseudo-random function.

2. Let F be a secure pseudorandom function (PRF). We consider the following message authentication
code (MAC), for messages of length 2n: The shared key is a key k € {0,1}" of the PRF F; To
authenticate a message m ||my with mq,my € {0,1}", compute the tag t = (F(k,my), F(k, (F(k,my))).
Is it a secure MAC?

3. Let F: {0,1}" x {0,1}" — {0,1}" be a secure PRE. Consider the following MAC. To authenticate a
message m = my||my|| ... ||m; where m; € {0,1}" for all i, using a key k, compute

t = F(k,ml) @@F(k,md)

Is it a secure MAC?



Exercise 4. [MAC with verification oracle]

In the notion of existential strong unforgeability under chosen-message attacks, the adversary is given
access to a MAC generation oracle Mac(k, .).

At each message query m, the challenger computes t <— Mac(k,m), returns t and updates the set of MAC
queries Q := QU {(t,m)}, which is initialized to Q := @. At the end of the game, the adversary outputs
a pair (m*, *) and wins if:

i Verify(k,m*,t*) =1

i (m*,t*) Q"
We consider an even stronger definition where the adversary is additionally given access to a verification
oracle Verify(k,.,.). At each verification query, the adversary chooses a pair (m,t) and the challenger

returns the output of Verify(k,m, t) € {0,1}. In this context, the adversary wins if one of these verification
queries (m, t) satisfies:

i Verify(k,m,t) =1
i () ¢ Q

Show that the verification oracle does not make the adversary any stronger. Namely, any strongly un-
forgeable MAC remains strongly unforgeable when the adversary has a verification oracle.

In the definition of standard unforgeability under chosen-message attacks, condition (ii) is replaced by V(m;, t;) € Q, M* # m;.



